Skip to main content

A package for training and evaluating knowledge graph embeddings

Project description

PyKEEN (Python KnowlEdge EmbeddiNgs) is a package for training and evaluating knowledge graph embeddings. Currently, it provides implementations of 10 knowledge graph emebddings models, and can be run in training mode in which users provide their own set of hyper-parameter values, or in hyper-parameter optimization mode to find suitable hyper-parameter values from set of user defined values. PyKEEN can also be run without having experience in programing by using its interactive command line interface that can be started with the command pykeen from a terminal.

Share Your Experimental Artifacts

You can share you trained KGE models along the other experimental artifacts through the KEEN-Model-Zoo.

Installation Current version on PyPI Supported Python Versions: 3.6 and 3.7 MIT License

pykeen can be installed on any system running Python 3.6+ with the following command:

pip install pykeen

Alternatively, it can be installed from the source for development with:

$ git clone https://github.com/SmartDataAnalytics/PyKEEN.git pykeen
$ cd pykeen
$ pip install -e .

However, GPU acceleration is limited to Linux systems with the appropriate graphics cards as described in the PyTorch documentation.

Installing Extras with Pip

PyKEEN uses pip’s extras functionality to allow some non-essential features to be skipped. They can be installed with the following:

  1. pip install pykeen[ndex] enables support for loading networks from NDEx. They can be added to the training file paths by prefixing files with ndex:

Tutorials

Code examples can be found in the notebooks directory.

Further tutorials are available in our documentation.

CLI Usage - Set Up Your Experiment within 60 seconds

To start the PyKEEN CLI, run the following command:

pykeen

then the command line interface will assist you to configure your experiments.

To start PyKEEN with an existing configuration file, run:

pykeen -c /path/to/config.json

then the command line interface won’t be called, instead the pipeline will be started immediately.

Starting the Prediction Pipeline

To make prediction based on a trained model, run:

pykeen-predict -m /path/to/model/directory -d /path/to/data/directory

where the value for the argument -m is the directory containing the model, in more detail following files must be contained in the directory:

  • configuration.json

  • entities_to_embeddings.json

  • relations_to_embeddings.json

  • trained_model.pkl

These files are created automatically created after model is trained (and evaluated) and exported in your specified output directory.

The value for the argument -d is the directory containing the data for which inference should be applied, and it needs to contain following files:

  • entities.tsv

  • relations.tsv

where entities.tsv contains all entities of interest, and relations.tsv all relations. Both files should contain should contain a single column containing all the entities/relations. Based on these files, PyKEEN will create all triple permutations, and computes the predictions for them, and saves them in data directory in predictions.tsv. Note: the model- and the data-directory can be the same directory as long as all required files are provided.

Optionally, a set of triples can be provided that should be exluded from the prediction, e.g. all the triples contained in the training set:

pykeen-predict -m /path/to/model/directory -d /path/to/data/directory -t /path/to/triples.tsv

Hence, it is easily possible to compute plausibility scores for all triples that are not contained in the training set.

Summarize the Results of All Experiments

To summarize the results of all experiments, please provide the path to parent directory containing all the experiments as sub-directories, and the path to the output file:

pykeen-summarize -d /path/to/experiments/directory -o /path/to/output/file.csv

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pykeen-0.0.24.tar.gz (560.8 kB view details)

Uploaded Source

Built Distribution

pykeen-0.0.24-py36-none-any.whl (77.1 kB view details)

Uploaded Python 3.6

File details

Details for the file pykeen-0.0.24.tar.gz.

File metadata

  • Download URL: pykeen-0.0.24.tar.gz
  • Upload date:
  • Size: 560.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for pykeen-0.0.24.tar.gz
Algorithm Hash digest
SHA256 ed813d343643e8a42fcf4d3397ee98a1a8b41bd34a858e833171a81b54aa3022
MD5 564b2bb102d08185c76425c09f3ca60a
BLAKE2b-256 0a7fd9184780e0494d777d0da7fce18d3a2423a78ac4c114da86b9795ea430fd

See more details on using hashes here.

File details

Details for the file pykeen-0.0.24-py36-none-any.whl.

File metadata

  • Download URL: pykeen-0.0.24-py36-none-any.whl
  • Upload date:
  • Size: 77.1 kB
  • Tags: Python 3.6
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for pykeen-0.0.24-py36-none-any.whl
Algorithm Hash digest
SHA256 3c101bd8998f65709596fb8ffa92df24a8bbd59eb230ebf523041e82523c3993
MD5 7cfd092f650a27d2a6ba57845724eba4
BLAKE2b-256 3526bfac35d09ace550cf3485d8544b80bb446da86444af4bcc208223d6a05e8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page