Kernel attention implementation of Pytorch TransformerEncoderLayer
Project description
pykernsformer
The pykernsformer module extends the torch.nn.TransformerEncoderLayer
class to include custom attention formulas.
Installation
You can install the pykernsformer package using pip as
pip install pykernsformer
Usage
pykernsformer comes with the following built in attention kernels.
pykernsformer | Attention | Formula | Citation |
---|---|---|---|
attention |
Regular | $softmax(\frac{QK^T}{\sqrt{d_k}})V$ | Vaswani et al. |
attention_linear |
Linear | $\frac{QK^T}{\sum_k QK^T}V$ | |
attention_periodic |
Periodic | $softmax(-\frac{2\sin^2(\pi\frac{\sqrt{2 - 2q_ik_j^T}}{p})}{\sqrt{d_k}})V$ | |
attention_LP |
Locally Periodic | $softmax(-\frac{2\sin^2(\pi\frac{\sqrt{2 - 2\hat{q}_i\hat{k}_j^T}}{p})}{\sqrt{d_k}} + \frac{{q_i}{k_j^T}}{\sqrt{d_k}})V$ | |
attention_RQ |
Rational Quadratic | $\frac{\left( 1 + \frac{1}{\alpha \sqrt{d_k}} - \frac{2QK^T}{2 \alpha \sqrt{d_k}} \right)^{-\alpha}}{\sum_k \left( 1 + \frac{1}{\alpha \sqrt{d_k}} - \frac{2QK^T}{2 \alpha \sqrt{d_k}} \right)^{-\alpha}}V$ |
You can also implement your own attention function with the following signature:
def attention_custom(query, key, value, mask=None, dropout=None):
[...]
p_attn = [...] # the attention matrix
[...]
return torch.matmul(p_attn, value), p_attn
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pykernsformer-0.0.4.tar.gz
(2.7 kB
view details)
Built Distribution
File details
Details for the file pykernsformer-0.0.4.tar.gz
.
File metadata
- Download URL: pykernsformer-0.0.4.tar.gz
- Upload date:
- Size: 2.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 156dc0f62a652adf97d593d6457e3cd3301ab5ee09b6a046057766e23d8b64a7 |
|
MD5 | bd8bcad64e4f118f600ab37169c9a4c3 |
|
BLAKE2b-256 | 226f749f7b77f7b073f84d0a1d14db3a5e5340e7acc9076748c0ad01ad50f74f |
File details
Details for the file pykernsformer-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: pykernsformer-0.0.4-py3-none-any.whl
- Upload date:
- Size: 2.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3609a2dc2ea652219983ffee48bd298a0b1eaa8e9d037327cfacea76b4b94bce |
|
MD5 | 4dd7d761b4f7286cee4f999787eb9f45 |
|
BLAKE2b-256 | 4c1dc054a9bc3f7d56100e049c6c27ad4ebd053ab19f49cb4327bb5c5f383b8e |