Skip to main content

Machine Learning library written in Python and NumPy.

Project description

pykitml logo

pykitml (Python Kit for Machine Learning)

Machine Learning library written in Python and NumPy.

Installation

python3 -m pip install pykitml

Documentation

https://pykitml.readthedocs.io/en/latest/

Demo (MNIST)

Training

import os.path

import numpy as np
import pykitml as pk
from pykitml.datasets import mnist

# Download dataset
if(not os.path.exists('mnist.pkl')): mnist.get()

# Load dataset
training_data, training_targets, testing_data, testing_targets = mnist.load()

# Create a new neural network
digit_classifier = pk.NeuralNetwork([784, 100, 10])

# Train it
digit_classifier.train(
    training_data=training_data,
    targets=training_targets, 
    batch_size=50, 
    epochs=1200, 
    optimizer=pk.Adam(learning_rate=0.012, decay_rate=0.95), 
    testing_data=testing_data, 
    testing_targets=testing_targets,
    testing_freq=30,
    decay_freq=15
)

# Save it
pk.save(digit_classifier, 'digit_classifier_network.pkl')

# Show performance
accuracy = digit_classifier.accuracy(training_data, training_targets)
print('Train Accuracy:', accuracy)        
accuracy = digit_classifier.accuracy(testing_data, testing_targets)
print('Test Accuracy:', accuracy)

# Plot performance graph
digit_classifier.plot_performance()

# Show confusion matrix
digit_classifier.confusion_matrix(training_data, training_targets)

Trying the model

import random

import numpy as np
import matplotlib.pyplot as plt
import pykitml as pk
from pykitml.datasets import mnist

# Load dataset
training_data, training_targets, testing_data, testing_targets = mnist.load()

# Load the trained network
digit_classifier = pk.load('digit_classifier_network.pkl')

# Pick a random example from testing data
index = random.randint(0, 9999)

# Show the test data and the label
plt.imshow(training_data[index].reshape(28, 28))
plt.show()
print('Label: ', training_targets[index])

# Show prediction
digit_classifier.feed(training_data[index])
model_output = digit_classifier.get_output_onehot()
print('Predicted: ', model_output)

Performance Graph

Performance Graph

Confusion Matrix

Confusion Matrix

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pykitml, version 0.1.1
Filename, size File type Python version Upload date Hashes
Filename, size pykitml-0.1.1-py3-none-any.whl (60.9 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size pykitml-0.1.1.tar.gz (45.8 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page