Skip to main content

No project description provided

Project description

pyklopp Maintenance Python 3.6 Python 3.7 Python 3.6 Tests

Tired of logging all hyperparameter configurations of your model prototyping to disk?

Pyklopp is a tool to initialize, train and evaluate pytorch models (currently for supervised problems). It persists all relevant hyperparameters, timings and model configurations. Your prototyping is reduced to defining your model, the dataset and your desired parameters.

Important note: we are undergoing an architectural change from writing config json files to writing meta data files given a jsonschema. So to keep your experiments reproducible and program against a current design of pyklopp, reference the exact pyklopp version in your experiment. E.g. for your environment.yml:

dependencies:
- pip:
  - pyklopp==0.3.0

Workflow sketch for developing a model and running it with pyklopp.

Installation

You can install a version from PyPi with: pip install pyklopp.

To install the latest development build, you can clone the repository and invoke poetry build (having poetry installed). Then you can use the built package and install it with pip in your current environment by pip install dist/xxx.whl.

Defining model & dataset

Used imports:

import pypaddle.sparse
import pypaddle.util
import torch.nn as nn
import torch.nn.functional as F

Specify your model in a plain python file, e.g.:

# my_model.py

# Your model can be any pytorch module
# Make sure to not define it locally (e.g. within the get_model()-function)
class LeNet(nn.Module):
    def __init__(self, output_size):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, output_size)

    def forward(self, x):
        out = F.relu(self.conv1(x))
        out = F.max_pool2d(out, 2)
        out = F.relu(self.conv2(out))
        out = F.max_pool2d(out, 2)
        out = out.view(out.size(0), -1)
        out = F.relu(self.fc1(out))
        out = F.relu(self.fc2(out))
        out = self.fc3(out)
        return out


# This is your model-instantiation function
# It receives an assembled configuration keyword argument list and should return an instance of your model
def get_model(**kwargs):
    output_size = int(kwargs['output_size'])

    return LeNet(output_size)

Invoke pyklopp to initialize it: pyklopp init my_model.get_model --save='test/model.pth' --config='{"output_size": 10}' Train it on cifar10:

  • pyklopp train test/model.pth cifar10.py --save='test/trained.pth' --config='{"batch_size": 100}'
  • pyklopp train test/model.pth torchvision.datasets.cifar.CIFAR10 --save 'test/trained.pth' --config='{"dataset_root": "/media/data/set/cifar10"}'

Examples

# Initializing & Saving: mymodel.py
pyklopp init foo --save='mymodel1/model.pth'
pyklopp init foo --config='{"python_seed_initial": 100}' --save='mymodel2/model.pth'

# Training
pyklopp train path/to/mymodel.pth mnist
pyklopp train path/to/mymodel.pth mnist --config='{"batch_size": 100, "learning_rate": 0.01}'
# foo.py - Your model initialization function

def init(**kwargs):
    input_size = kwargs['input_size']
    output_size = kwargs['output_size']

    return pypaddle.sparse.MaskedDeepFFN(input_size, output_size, [100, 100])
# mnist.py - Your dataset loading functions

def train_loader(**kwargs):
    batch_size = kwargs['batch_size']

    mnist_train_loader, mnist_test_loader, _, selected_root = pypaddle.util.get_mnist_loaders(batch_size, '/media/data/set/mnist')
    return mnist_train_loader


def test_loader(**kwargs):
    batch_size = kwargs['batch_size']

    mnist_train_loader, mnist_test_loader, _, selected_root = pypaddle.util.get_mnist_loaders(batch_size, '/media/data/set/mnist')
    return mnist_test_loader

Development

  • Create wheel files in dist/: poetry build
  • Install wheel in current environment with pip: pip install path/to/pyklopp/dist/pyklopp-0.1.0-py3-none-any.whl

Running CI image locally

Install latest gitlab-runner (version 12.3 or up):

# For Debian/Ubuntu/Mint
curl -L https://packages.gitlab.com/install/repositories/runner/gitlab-runner/script.deb.sh | sudo bash

# For RHEL/CentOS/Fedora
curl -L https://packages.gitlab.com/install/repositories/runner/gitlab-runner/script.rpm.sh | sudo bash

apt-get update
apt-get install gitlab-runner

$ gitlab-runner -v
Version:      12.3.0

Execute job tests: gitlab-runner exec docker test-python3.6

Running github action locally

Install https://github.com/nektos/act. Run act

Running pre-commit checks locally

poetry run pre-commit run --all-files

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyklopp-0.3.2.tar.gz (18.8 kB view details)

Uploaded Source

Built Distribution

pyklopp-0.3.2-py3-none-any.whl (25.9 kB view details)

Uploaded Python 3

File details

Details for the file pyklopp-0.3.2.tar.gz.

File metadata

  • Download URL: pyklopp-0.3.2.tar.gz
  • Upload date:
  • Size: 18.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.3

File hashes

Hashes for pyklopp-0.3.2.tar.gz
Algorithm Hash digest
SHA256 d59a4cbfe367c97e02fde87a9b5c46acd57e66f6e245c19e4f1a0923ffb58f8f
MD5 db111c2765f94b4ec1e60511e423649a
BLAKE2b-256 4e21a1c923c2a193b896423e60e54696e888d1be93e5e0b76581588777a66f04

See more details on using hashes here.

File details

Details for the file pyklopp-0.3.2-py3-none-any.whl.

File metadata

  • Download URL: pyklopp-0.3.2-py3-none-any.whl
  • Upload date:
  • Size: 25.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.3

File hashes

Hashes for pyklopp-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 7faed0b6778c14e84085041563c8dcdbfbd4f45278111c883f36d241814de8ba
MD5 67e58b7f6a5417b31f0387e4bdef03ae
BLAKE2b-256 d15303b60d1276bb780c39b4eabbcfe59c5844783d2e61cdc81d6a687f01bbee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page