Skip to main content

A development platform for high-level NLP applications in Japanese

Project description

pyknp-eventgraph

EventGraph is a development platform for high-level NLP applications in Japanese. The core concept of EventGraph is event, a language information unit that is closely related to predicate-argument structure but more application-oriented. Events are linked to each other based on their syntactic and semantic relations.

Requirements

  • Python 3.6 or later
  • pyknp
  • graphviz

Installation

To install pyknp-eventgraph, use pip.

$ pip install pyknp-eventgraph

or

$ python setup.py install

Quick Tour

Step 1: Create an EventGraph

An EventGraph is built on language analysis given in a KNP format.

# Add imports.
from pyknp import KNP
from pyknp_eventgraph import EventGraph

# Parse a document.
document = ['彼女は海外勤務が長いので、英語がうまいに違いない。', '私はそう確信していた。']
knp = KNP()
analysis = [knp.parse(sentence) for sentence in document]

# Create an EventGraph.
evg = EventGraph.build(analysis)
print(evg)  # <EventGraph, #sentences: 2, #events: 3, #relations: 1>

Step 2: Extract Information

Users can obtain various information about language analysis via a simple interface.

Step 2.1: Sentence

# Extract sentences.
sentences = evg.sentences
print(sentences)
# [
#   <Sentence, sid: 1, ssid: 0, surf: 彼女は海外勤務が長いので、英語がうまいに違いない。>,
#   <Sentence, sid: 2, ssid: 1, surf: 私はそう確信していた。>
# ]

# Convert a sentence into various forms.
sentence = evg.sentences[0]
print(sentence.surf)   # 彼女は海外勤務が長いので、英語がうまいに違いない。
print(sentence.mrphs)  # 彼女 は 海外 勤務 が 長い ので 、 英語 が うまい に 違いない 。
print(sentence.reps)   # 彼女/かのじょ は/は 海外/かいがい 勤務/きんむ が/が 長い/ながい ので/ので 、/、 英語/えいご が/が 上手い/うまい に/に 違い無い/ちがいない 。/。

Step 2.2: Event

# Extract events.
events = evg.events
print(events)
# [
#   <Event, evid: 0, surf: 海外勤務が長いので、>,
#   <Event, evid: 1, surf: 彼女は英語がうまいに違いない。>,
#   <Event, evid: 2, surf: 私はそう確信していた。>
# ]

# Convert an event into various forms.
event = evg.events[0]
print(event.surf)              # 海外勤務が長いので、
print(event.mrphs)             # 海外 勤務 が 長い ので 、
print(event.normalized_mrphs)  # 海外 勤務 が 長い
print(event.reps)              # 海外/かいがい 勤務/きんむ が/が 長い/ながい ので/ので 、/、
print(event.normalized_reps)   # 海外/かいがい 勤務/きんむ が/が 長い/ながい
print(event.content_rep_list)  # ['海外/かいがい', '勤務/きんむ', '長い/ながい']

# Extract an event's PAS.
pas = event.pas
print(pas)            # <PAS, predicate: 長い/ながい, arguments: {ガ: 勤務/きんむ}>
print(pas.predicate)  # <Predicate, type: 形, surf: 長い>
print(pas.arguments)  # defaultdict(<class 'list'>, {'ガ': [<Argument, case: ガ, surf: 勤務が>]})

# Extract an event's features.
features = event.features
print(features)  # <Features, modality: None, tense: 非過去, negation: False, state: 状態述語, complement: False>

Step 2.3: Event-to-event Relation

# Extract event-to-event relations.
relations = evg.relations
print(relations)  # [<Relation, label: 原因・理由, modifier_evid: 0, head_evid: 1>]

# Take a closer look at an event-to-event relation
relation = relations[0]
print(relation.label)     # 原因・理由
print(relation.surf)      # ので
print(relation.modifier)  # <Event, evid: 0, surf: 海外勤務が長いので、>
print(relation.head)      # <Event, evid: 1, surf: 彼女は英語がうまいに違いない。>

Step 3: Seve/Load an EventGraph

Users can save and load an EventGraph by serializing it as a JSON object.

# Save an EventGraph as a JSON file.
evg.save('evg.json')

# Load an EventGraph from a JSON file.
with open('evg.json') as f:
    evg = EventGraph.load(f)

Step 4: Visualize an EventGraph

Users can visualize an EventGraph using graphviz.

from pyknp_eventgraph import make_image
make_image(evg, 'evg.svg')  # Currently, only supports 'svg'.

Advanced Usage

Merging modifiers

By merging a modifier event to the modifiee, users can construct a larger information unit.

from pyknp import KNP
from pyknp_eventgraph import EventGraph

document = ['もっととろみが持続する作り方をして欲しい。']
knp = KNP()
analysis = [knp.parse(sentence) for sentence in document]

evg = EventGraph.build(analysis)
print(evg)  # <EventGraph, #sentences: 1, #events: 2, #relations: 1>

# Investigate the relation.
relation = evg.relations[0]
print(relation)           # <Relation, label: 連体修飾, modifier_evid: 0, head_evid: 1>
print(relation.modifier)  # <Event, evid: 0, surf: もっととろみが持続する>
print(relation.head)      # <Event, evid: 1, surf: 作り方をして欲しい。>

# To merge modifier events, enable `include_modifiers`.
print(relation.head.surf)                           # 作り方をして欲しい。
print(relation.head.surf_(include_modifiers=True))  # もっととろみが持続する作り方をして欲しい。

# Other formats also support `include_modifiers`.
print(relation.head.mrphs_(include_modifiers=True))  # もっと とろみ が 持続 する 作り 方 を して 欲しい 。
print(relation.head.normalized_mrphs_(include_modifiers=True))  # もっと とろみ が 持続 する 作り 方 を して 欲しい

Binary serialization

When an EventGraph is serialized in a JSON format, it will lose some functionality, including access to KNP objects and modifier merging. To keep full functionality, use Python's pickle utility for serialization.

# Save an EventGraph using Python's pickle utility.
evg.save('evg.pkl', binary=True)

# Load an EventGraph using Python's pickle utility.
with open('evg.pkl', 'rb') as f:
    evg_ = EventGraph.load(f, binary=True)

CLI

EventGraph Construction

$ echo '彼女は海外勤務が長いので、英語がうまいに違いない。' | jumanpp | knp -tab | evg -o example-eventgraph.json

EventGraph Visualization

$ evgviz example-eventgraph.json example-eventgraph.svg

Documents

https://pyknp-eventgraph.readthedocs.io/en/latest/

Authors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyknp-eventgraph-6.1.4.tar.gz (29.3 kB view details)

Uploaded Source

Built Distribution

pyknp_eventgraph-6.1.4-py3-none-any.whl (33.7 kB view details)

Uploaded Python 3

File details

Details for the file pyknp-eventgraph-6.1.4.tar.gz.

File metadata

  • Download URL: pyknp-eventgraph-6.1.4.tar.gz
  • Upload date:
  • Size: 29.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.5 CPython/2.7.16 Darwin/20.3.0

File hashes

Hashes for pyknp-eventgraph-6.1.4.tar.gz
Algorithm Hash digest
SHA256 d908e4f0528fa8c9bd9d5ba8b4d812e1a37b9f9223122b08fa414b0672a6f24a
MD5 8ff07eed3926307b71b024ede82bf004
BLAKE2b-256 cdb24dbdf0258ff7ccfaa95ed2be3974496675d497bf3600251229a6ef5a0175

See more details on using hashes here.

File details

Details for the file pyknp_eventgraph-6.1.4-py3-none-any.whl.

File metadata

File hashes

Hashes for pyknp_eventgraph-6.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 9508dcd0dc45b7c31ea7d0989259885293eea4223fd334f5862a087eed67aae8
MD5 51ebdd078322ddbf7086e767e9ada09b
BLAKE2b-256 a082f6a96a8f995d67b3524f5ef39516041a0cdab9861210515501204b0fc051

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page