A development platform for high-level NLP applications in Japanese
Project description
pyknp-eventgraph
EventGraph is a development platform for high-level NLP applications in Japanese. The core concept of EventGraph is event, a language information unit that is closely related to predicate-argument structure but more application-oriented. Events are linked to each other based on their syntactic and semantic relations.
Requirements
- Python 3.6 or later
- pyknp
- graphviz
Installation
To install pyknp-eventgraph, use pip
.
$ pip install pyknp-eventgraph
Quick Tour
Step 1: Create an EventGraph
An EventGraph is built on language analysis given in a KNP format.
# Add imports.
from pyknp import KNP
from pyknp_eventgraph import EventGraph
# Parse a document.
document = ['彼女は海外勤務が長いので、英語がうまいに違いない。', '私はそう確信していた。']
knp = KNP()
analysis = [knp.parse(sentence) for sentence in document]
# Create an EventGraph.
evg = EventGraph.build(analysis)
print(evg) # <EventGraph, #sentences: 2, #events: 3, #relations: 1>
Step 2: Extract Information
Users can obtain various information about language analysis via a simple interface.
Step 2.1: Sentence
# Extract sentences.
sentences = evg.sentences
print(sentences)
# [
# <Sentence, sid: 1, ssid: 0, surf: 彼女は海外勤務が長いので、英語がうまいに違いない。>,
# <Sentence, sid: 2, ssid: 1, surf: 私はそう確信していた。>
# ]
# Convert a sentence into various forms.
sentence = evg.sentences[0]
print(sentence.surf) # 彼女は海外勤務が長いので、英語がうまいに違いない。
print(sentence.mrphs) # 彼女 は 海外 勤務 が 長い ので 、 英語 が うまい に 違いない 。
print(sentence.reps) # 彼女/かのじょ は/は 海外/かいがい 勤務/きんむ が/が 長い/ながい ので/ので 、/、 英語/えいご が/が 上手い/うまい に/に 違い無い/ちがいない 。/。
Step 2.2: Event
# Extract events.
events = evg.events
print(events)
# [
# <Event, evid: 0, surf: 海外勤務が長いので、>,
# <Event, evid: 1, surf: 彼女は英語がうまいに違いない。>,
# <Event, evid: 2, surf: 私はそう確信していた。>
# ]
# Convert an event into various forms.
event = evg.events[0]
print(event.surf) # 海外勤務が長いので、
print(event.mrphs) # 海外 勤務 が 長い ので 、
print(event.normalized_mrphs) # 海外 勤務 が 長い
print(event.reps) # 海外/かいがい 勤務/きんむ が/が 長い/ながい ので/ので 、/、
print(event.normalized_reps) # 海外/かいがい 勤務/きんむ が/が 長い/ながい
print(event.content_rep_list) # ['海外/かいがい', '勤務/きんむ', '長い/ながい']
# Extract an event's PAS.
pas = event.pas
print(pas) # <PAS, predicate: 長い/ながい, arguments: {ガ: 勤務/きんむ}>
print(pas.predicate) # <Predicate, type: 形, surf: 長い>
print(pas.arguments) # defaultdict(<class 'list'>, {'ガ': [<Argument, case: ガ, surf: 勤務が>]})
# Extract an event's features.
features = event.features
print(features) # <Features, modality: None, tense: 非過去, negation: False, state: 状態述語, complement: False>
Step 2.3: Event-to-event Relation
# Extract event-to-event relations.
relations = evg.relations
print(relations) # [<Relation, label: 原因・理由, modifier_evid: 0, head_evid: 1>]
# Take a closer look at an event-to-event relation
relation = relations[0]
print(relation.label) # 原因・理由
print(relation.surf) # ので
print(relation.modifier) # <Event, evid: 0, surf: 海外勤務が長いので、>
print(relation.head) # <Event, evid: 1, surf: 彼女は英語がうまいに違いない。>
Step 3: Seve/Load an EventGraph
Users can save and load an EventGraph by serializing it as a JSON object.
# Save an EventGraph as a JSON file.
evg.save('evg.json')
# Load an EventGraph from a JSON file.
with open('evg.json') as f:
evg = EventGraph.load(f)
Step 4: Visualize an EventGraph
Users can visualize an EventGraph using graphviz.
from pyknp_eventgraph import make_image
make_image(evg, 'evg.svg') # Currently, only supports 'svg'.
Advanced Usage
Merging modifiers
By merging a modifier event to the modifiee, users can construct a larger information unit.
from pyknp import KNP
from pyknp_eventgraph import EventGraph
document = ['もっととろみが持続する作り方をして欲しい。']
knp = KNP()
analysis = [knp.parse(sentence) for sentence in document]
evg = EventGraph.build(analysis)
print(evg) # <EventGraph, #sentences: 1, #events: 2, #relations: 1>
# Investigate the relation.
relation = evg.relations[0]
print(relation) # <Relation, label: 連体修飾, modifier_evid: 0, head_evid: 1>
print(relation.modifier) # <Event, evid: 0, surf: もっととろみが持続する>
print(relation.head) # <Event, evid: 1, surf: 作り方をして欲しい。>
# To merge modifier events, enable `include_modifiers`.
print(relation.head.surf) # 作り方をして欲しい。
print(relation.head.surf_(include_modifiers=True)) # もっととろみが持続する作り方をして欲しい。
# Other formats also support `include_modifiers`.
print(relation.head.mrphs_(include_modifiers=True)) # もっと とろみ が 持続 する 作り 方 を して 欲しい 。
print(relation.head.normalized_mrphs_(include_modifiers=True)) # もっと とろみ が 持続 する 作り 方 を して 欲しい
Binary serialization
When an EventGraph is serialized in a JSON format, it will lose some functionality, including access to KNP objects and modifier merging. To keep full functionality, use Python's pickle utility for serialization.
# Save an EventGraph using Python's pickle utility.
evg.save('evg.pkl', binary=True)
# Load an EventGraph using Python's pickle utility.
with open('evg.pkl', 'rb') as f:
evg_ = EventGraph.load(f, binary=True)
CLI
EventGraph Construction
$ echo '彼女は海外勤務が長いので、英語がうまいに違いない。' | jumanpp | knp -tab | evg -o example-eventgraph.json
EventGraph Visualization
$ evgviz example-eventgraph.json example-eventgraph.svg
Documents
https://pyknp-eventgraph.readthedocs.io/en/latest/
Authors
- Kurohashi-Kawahara Lab, Kyoto University.
- contact@nlp.ist.i.kyoto-u.ac.jp
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pyknp-eventgraph-6.2.0.tar.gz
.
File metadata
- Download URL: pyknp-eventgraph-6.2.0.tar.gz
- Upload date:
- Size: 29.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.7 CPython/3.9.6 Darwin/20.5.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 14ebeb41cb5dd54863e92e106799ec9c3c074bd058c36e83be25b555d494a3c4 |
|
MD5 | cbae9a251c8999ef9a059e60510f52e0 |
|
BLAKE2b-256 | 82ed80e7dd981bc550d787ff2eedb914a583a7a784df156f355b113473b8fabd |
File details
Details for the file pyknp_eventgraph-6.2.0-py3-none-any.whl
.
File metadata
- Download URL: pyknp_eventgraph-6.2.0-py3-none-any.whl
- Upload date:
- Size: 34.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.7 CPython/3.9.6 Darwin/20.5.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2eab56c69b089c90ae86f475b24e12d08031de1f7a343f843ca7ea9038e0d3de |
|
MD5 | 294038328e224aa37de4ed3e9117503f |
|
BLAKE2b-256 | bef079caf11c6c28514a189812f7ecea0b5c7501afbb39738f0700ee19e9e366 |