Skip to main content

A development platform for high-level NLP applications in Japanese

Project description

pyknp-eventgraph

EventGraph is a development platform for high-level NLP applications in Japanese. The core concept of EventGraph is event, a language information unit that is closely related to predicate-argument structure but more application-oriented. Events are linked to each other based on their syntactic and semantic relations.

Requirements

  • Python 3.6 or later
  • pyknp
  • graphviz

Installation

To install pyknp-eventgraph, use pip.

$ pip install pyknp-eventgraph

Quick Tour

Step 1: Create an EventGraph

An EventGraph is built on language analysis given in a KNP format.

# Add imports.
from pyknp import KNP
from pyknp_eventgraph import EventGraph

# Parse a document.
document = ['彼女は海外勤務が長いので、英語がうまいに違いない。', '私はそう確信していた。']
knp = KNP()
analysis = [knp.parse(sentence) for sentence in document]

# Create an EventGraph.
evg = EventGraph.build(analysis)
print(evg)  # <EventGraph, #sentences: 2, #events: 3, #relations: 1>

Step 2: Extract Information

Users can obtain various information about language analysis via a simple interface.

Step 2.1: Sentence

# Extract sentences.
sentences = evg.sentences
print(sentences)
# [
#   <Sentence, sid: 1, ssid: 0, surf: 彼女は海外勤務が長いので、英語がうまいに違いない。>,
#   <Sentence, sid: 2, ssid: 1, surf: 私はそう確信していた。>
# ]

# Convert a sentence into various forms.
sentence = evg.sentences[0]
print(sentence.surf)   # 彼女は海外勤務が長いので、英語がうまいに違いない。
print(sentence.mrphs)  # 彼女 は 海外 勤務 が 長い ので 、 英語 が うまい に 違いない 。
print(sentence.reps)   # 彼女/かのじょ は/は 海外/かいがい 勤務/きんむ が/が 長い/ながい ので/ので 、/、 英語/えいご が/が 上手い/うまい に/に 違い無い/ちがいない 。/。

Step 2.2: Event

# Extract events.
events = evg.events
print(events)
# [
#   <Event, evid: 0, surf: 海外勤務が長いので、>,
#   <Event, evid: 1, surf: 彼女は英語がうまいに違いない。>,
#   <Event, evid: 2, surf: 私はそう確信していた。>
# ]

# Convert an event into various forms.
event = evg.events[0]
print(event.surf)              # 海外勤務が長いので、
print(event.mrphs)             # 海外 勤務 が 長い ので 、
print(event.normalized_mrphs)  # 海外 勤務 が 長い
print(event.reps)              # 海外/かいがい 勤務/きんむ が/が 長い/ながい ので/ので 、/、
print(event.normalized_reps)   # 海外/かいがい 勤務/きんむ が/が 長い/ながい
print(event.content_rep_list)  # ['海外/かいがい', '勤務/きんむ', '長い/ながい']

# Extract an event's PAS.
pas = event.pas
print(pas)            # <PAS, predicate: 長い/ながい, arguments: {ガ: 勤務/きんむ}>
print(pas.predicate)  # <Predicate, type: 形, surf: 長い>
print(pas.arguments)  # defaultdict(<class 'list'>, {'ガ': [<Argument, case: ガ, surf: 勤務が>]})

# Extract an event's features.
features = event.features
print(features)  # <Features, modality: None, tense: 非過去, negation: False, state: 状態述語, complement: False>

Step 2.3: Event-to-event Relation

# Extract event-to-event relations.
relations = evg.relations
print(relations)  # [<Relation, label: 原因・理由, modifier_evid: 0, head_evid: 1>]

# Take a closer look at an event-to-event relation
relation = relations[0]
print(relation.label)     # 原因・理由
print(relation.surf)      # ので
print(relation.modifier)  # <Event, evid: 0, surf: 海外勤務が長いので、>
print(relation.head)      # <Event, evid: 1, surf: 彼女は英語がうまいに違いない。>

Step 3: Seve/Load an EventGraph

Users can save and load an EventGraph by serializing it as a JSON object.

# Save an EventGraph as a JSON file.
evg.save('evg.json')

# Load an EventGraph from a JSON file.
with open('evg.json') as f:
    evg = EventGraph.load(f)

Step 4: Visualize an EventGraph

Users can visualize an EventGraph using graphviz.

from pyknp_eventgraph import make_image
make_image(evg, 'evg.svg')  # Currently, only supports 'svg'.

Advanced Usage

Merging modifiers

By merging a modifier event to the modifiee, users can construct a larger information unit.

from pyknp import KNP
from pyknp_eventgraph import EventGraph

document = ['もっととろみが持続する作り方をして欲しい。']
knp = KNP()
analysis = [knp.parse(sentence) for sentence in document]

evg = EventGraph.build(analysis)
print(evg)  # <EventGraph, #sentences: 1, #events: 2, #relations: 1>

# Investigate the relation.
relation = evg.relations[0]
print(relation)           # <Relation, label: 連体修飾, modifier_evid: 0, head_evid: 1>
print(relation.modifier)  # <Event, evid: 0, surf: もっととろみが持続する>
print(relation.head)      # <Event, evid: 1, surf: 作り方をして欲しい。>

# To merge modifier events, enable `include_modifiers`.
print(relation.head.surf)                           # 作り方をして欲しい。
print(relation.head.surf_(include_modifiers=True))  # もっととろみが持続する作り方をして欲しい。

# Other formats also support `include_modifiers`.
print(relation.head.mrphs_(include_modifiers=True))  # もっと とろみ が 持続 する 作り 方 を して 欲しい 。
print(relation.head.normalized_mrphs_(include_modifiers=True))  # もっと とろみ が 持続 する 作り 方 を して 欲しい

Binary serialization

When an EventGraph is serialized in a JSON format, it will lose some functionality, including access to KNP objects and modifier merging. To keep full functionality, use Python's pickle utility for serialization.

# Save an EventGraph using Python's pickle utility.
evg.save('evg.pkl', binary=True)

# Load an EventGraph using Python's pickle utility.
with open('evg.pkl', 'rb') as f:
    evg_ = EventGraph.load(f, binary=True)

CLI

EventGraph Construction

$ echo '彼女は海外勤務が長いので、英語がうまいに違いない。' | jumanpp | knp -tab | evg -o example-eventgraph.json

EventGraph Visualization

$ evgviz example-eventgraph.json example-eventgraph.svg

Documents

https://pyknp-eventgraph.readthedocs.io/en/latest/

Authors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyknp-eventgraph-6.2.1.tar.gz (29.7 kB view details)

Uploaded Source

Built Distribution

pyknp_eventgraph-6.2.1-py3-none-any.whl (34.7 kB view details)

Uploaded Python 3

File details

Details for the file pyknp-eventgraph-6.2.1.tar.gz.

File metadata

  • Download URL: pyknp-eventgraph-6.2.1.tar.gz
  • Upload date:
  • Size: 29.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.8 CPython/3.9.7 Darwin/20.6.0

File hashes

Hashes for pyknp-eventgraph-6.2.1.tar.gz
Algorithm Hash digest
SHA256 74a1f2afd8c06f1c07ac484ba3772ed7c9e7bb2fabecced924603266fdc046bc
MD5 a2e397de98010a8b155106dd06c9898a
BLAKE2b-256 b7d7d642751fd4635beea2baeea46a242ec66d6fee35bc17eaba0d85cb217c8e

See more details on using hashes here.

File details

Details for the file pyknp_eventgraph-6.2.1-py3-none-any.whl.

File metadata

File hashes

Hashes for pyknp_eventgraph-6.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 c38016b4ae710299f2005360084e06bb2f5e4073eb42049a29595835c50c6d0f
MD5 7e391011dd7e3e7745cad7bc9d9acc24
BLAKE2b-256 931a0290f254605eebafdc4261034d1c0c788fea1eae35d6919d4bd7af98b76a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page