Skip to main content

Simple Text similarity python

Project description

pykosinus

pykosinus is an open-source Python library for text similarity search scoring. It provides a fast and memory-efficient way to calculate cosine similarity scores, making it suitable for various text similarity applications. The library is designed to be user-friendly and encourages contributions from the community.

Installation

To install pykosinus, make sure you have Python 3.8.17 or higher installed. Then, you can install the library using pip:

pip install pykosinus

Usage

To use pykosinus in your Python project, you can follow these steps:

  • Import the necessary modules and classes:
from pykosinus import Content
from pykosinus.lib.scoring import CosineSimilarity
  • Create an instance of the CosineSimilarity class, providing the collection name as a parameter:
similarity = CosineSimilarity(collection_name)
  • Set the contents to be searched using the with_contents method, passing a list of Content objects:
contents = [
    Content(
        content="Lorem ipsum dolor sit amet, consectetur adipiscing elit.",
        identifier="blog-1",
        section="blog_title",
    ),
    Content(
        content="Sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.",
        identifier="blog-2",
        section="blog_title",
    ),
    Content(
        content="Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris.",
        identifier="blog-3",
        section="blog_title",
    ),
    # Add more contents as needed
]
similarity.with_contents(contents)
  • Initialize the similarity search by calling the initialize method:
similarity.initialize()
  • Perform a similarity search by calling the search method, providing a keyword and an optional threshold:
results = similarity.search(keyword="search keyword", threshold=0.2)
  • The search method returns a list of ScoringResult objects, which contain the relevant information about the search results. You can access the properties of each result, such as identifier, content, section, similar, and score.
for result in results:
    print(
        result.identifier, result.content, result.section, result.similar, result.score
    )

Contributing

pykosinus welcomes contributions from the community. If you would like to contribute to the library, please follow these steps:

  • Fork the pykosinus repository on GitHub.
  • Create a new branch for your feature or bug fix.
  • Make your changes and commit them with descriptive commit messages.
  • Push your changes to your forked repository.
  • Submit a pull request to the master pykosinus repository, explaining the changes you have made.

Versioning

pykosinus is currently in version 0.0.1. We encourage continuous development and contributions from other contributors to improve and expand the library.

License

pykosinus is released under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pykosinus-0.0.1.tar.gz (8.1 kB view details)

Uploaded Source

Built Distribution

pykosinus-0.0.1-py3-none-any.whl (6.8 kB view details)

Uploaded Python 3

File details

Details for the file pykosinus-0.0.1.tar.gz.

File metadata

  • Download URL: pykosinus-0.0.1.tar.gz
  • Upload date:
  • Size: 8.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/40.0 requests/2.28.2 requests-toolbelt/1.0.0 urllib3/1.26.15 tqdm/4.65.0 importlib-metadata/6.7.0 keyring/24.2.0 rfc3986/2.0.0 colorama/0.4.6 CPython/3.11.5

File hashes

Hashes for pykosinus-0.0.1.tar.gz
Algorithm Hash digest
SHA256 365f8d88a184434a5c78145ca35d63f4fcf47a01b42939f3416f29ba65814ba6
MD5 4affeae3ee9f92cf609c2fda3a951a58
BLAKE2b-256 6fbd79083c91b71d7770581490e79ca693a2293562609500132ce21a41e688d6

See more details on using hashes here.

File details

Details for the file pykosinus-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: pykosinus-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 6.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/40.0 requests/2.28.2 requests-toolbelt/1.0.0 urllib3/1.26.15 tqdm/4.65.0 importlib-metadata/6.7.0 keyring/24.2.0 rfc3986/2.0.0 colorama/0.4.6 CPython/3.11.5

File hashes

Hashes for pykosinus-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4c9b42558a474f499f49f18186a302f3f649671a85e9acb7a533326e20de85bb
MD5 9890858ccc92d1850e8947aca0392762
BLAKE2b-256 2f801611e1f8534652c1b163ca1132201a6101ea0f52787c9f0d94154970e96d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page