Skip to main content

A CLI tool for creating images from DNA sequences

Project description

LAGG

Looking at Genomes Graphically (LAGG) is a CLI tool for creating images from DNA sequences.

LAGG is capable of generating an image providing just an SRA (or ENA) accession number and a k-mer count. Of course, the CLI contains more options and even a config-based workflow for more complex processes.

Images are generated using an algorithm based on Chaos Game Representation[^1] (CGR). This process creates images by counting k-mers for a genome / DNA sequence. With genomes aquired from the European Nucleotide Archive (ENA). Options are available to use Cutadapt[^3] to preprocess the genomes before counting.

Installation

LAGG makes use of Jellyfish[^2] as a dependency for k-mer counting. Installation instructions can be found on the GitHub page for Jellyfish found here. Jellyfish is commonly available on major Linux distributions and on Homebrew for MacOS.

After installing dependencies, install LAGG using pip with the following command:

pip install pylagg

Usage

Using LAGG is as simple as executing the lagg command.

For example, to generate an image from an SRA or ENA accession number:

lagg cgr -a <accession> -k <kmer size>

Replace <accession> with any accession number (try ERR4770013 for a small COVID-19 genome)

The <kmer_size> is an integer used when counting kmers which can eventually determine the size of the image. For larger genomes, consider a size of 9-10. For smaller ones, consider 5-8.

For more options or help type 'lagg --help or visit the documentation site here.

For Contributors

This project uses Poetry to handle dependencies and build the project. Installation instructions can be found here.

Install Dependencies

Similar to the CLI, Jellyfish is required to execute k-mer counting for LAGG. Please make sure to have to it installed before continuing. Instructions can be found in the "Installation" section above.

For project dependencies, use poetry install to automatically create a new virtual environment with all required packages.

If you'd like to install the dependencies directly within the project directory, use the following command:

poetry config virtualenvs.in-project true

Running Tests

To run tests, first, activate the virtual environment using poetry shell.

Use pytest to run all tests.

[^1]: H. Joel. Jeffrey, “Chaos game representation of gene structure,” Nucleic Acids Research, vol. 18, no. 8, pp. 2163–2170, 1990, doi: https://doi.org/10.1093/nar/18.8.2163.

[^2]: G. Marçais and C. Kingsford, “A fast, lock-free approach for efficient parallel counting of occurrences of k-mers,” Bioinformatics, vol. 27, no. 6, pp. 764–770, Jan. 2011, doi: https://doi.org/10.1093/bioinformatics/btr011.

[^3]: Martin, Marcel. “Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads.” EMBnet.journal, vol. 17, no. 1, 2 May 2011, p. 10, journal.embnet.org/index.php/embnetjournal/article/view/200, https://doi.org/10.14806/ej.17.1.200.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pylagg-0.4.4.tar.gz (25.5 kB view details)

Uploaded Source

Built Distribution

pylagg-0.4.4-py3-none-any.whl (27.2 kB view details)

Uploaded Python 3

File details

Details for the file pylagg-0.4.4.tar.gz.

File metadata

  • Download URL: pylagg-0.4.4.tar.gz
  • Upload date:
  • Size: 25.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.6 Linux/6.6.56

File hashes

Hashes for pylagg-0.4.4.tar.gz
Algorithm Hash digest
SHA256 9602fc99888dfccfd7c44b9dba97c147ccf73cac5d64bc048354ec8019671c68
MD5 8da30af7dbec132dce6268959a7c1e27
BLAKE2b-256 99a908f8e0d43123f2481e4980dc11a1f1cff4a7a3b4d2106312880713458b27

See more details on using hashes here.

File details

Details for the file pylagg-0.4.4-py3-none-any.whl.

File metadata

  • Download URL: pylagg-0.4.4-py3-none-any.whl
  • Upload date:
  • Size: 27.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.6 Linux/6.6.56

File hashes

Hashes for pylagg-0.4.4-py3-none-any.whl
Algorithm Hash digest
SHA256 240bc8cb0b420568a974b07c725ba4fd568ed515439e7a5a8650902e670a7568
MD5 52129ed0af0c5face87555f6f226ba31
BLAKE2b-256 e2848e072470a0717188bddb5d8b17c9b37e8db62814d6dab30260776e960da5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page