Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.10.14-cp38-abi3-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.8+ Windows x86-64

pylance-0.10.14-cp38-abi3-manylinux_2_28_x86_64.whl (22.5 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.28+ x86-64

pylance-0.10.14-cp38-abi3-manylinux_2_24_aarch64.whl (20.8 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.24+ ARM64

pylance-0.10.14-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.5 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

pylance-0.10.14-cp38-abi3-macosx_11_0_arm64.whl (19.6 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

pylance-0.10.14-cp38-abi3-macosx_10_15_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.8+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.10.14-cp38-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.10.14-cp38-abi3-win_amd64.whl
  • Upload date:
  • Size: 22.9 MB
  • Tags: CPython 3.8+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for pylance-0.10.14-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 a95181effd819f00c71688b813b211bd07d19c8fe008f028c85d91b319d96801
MD5 659ccc897bd6a2b217352cd2654985e7
BLAKE2b-256 22d93676e16de65e24af82bac5a2865c7b9f9e78585c97de314caac5ac1f60ba

See more details on using hashes here.

File details

Details for the file pylance-0.10.14-cp38-abi3-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.14-cp38-abi3-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 213b485a74c1a204d5238dba43c641c3ba8c07d785305874f3e726e562beb37d
MD5 7f1778333a66b0e7a4ad9366b9ea0e67
BLAKE2b-256 fc1c8f96d3345ac464d4b5ebcd25c4aefb5dacfc4ad8a7d3c41cd9723cf9d24e

See more details on using hashes here.

File details

Details for the file pylance-0.10.14-cp38-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.10.14-cp38-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 cdd8c3218aad621616b0d54517a3283ba731a5723946d82ab60cb15e1498a3b1
MD5 28b737d957c6a441b3a2c3eba7349c33
BLAKE2b-256 5894258394712cdd2e577009ae22f7b69404d9d8b32f743a5a126fd3e53aceef

See more details on using hashes here.

File details

Details for the file pylance-0.10.14-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.14-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2f3e639bf0b9ed61ccc7d91fa3fee4a5010b75e99c722893100227f2712c6628
MD5 2b9e997b1820518de7e5b915d6fad02f
BLAKE2b-256 112b077eb5f378e3f870972abe5855a6583fd5c5a25d3ed18361e8f99854e1b1

See more details on using hashes here.

File details

Details for the file pylance-0.10.14-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.10.14-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 896c042428c893db1a2baf4288457f1d7bfcc1574b45dc5d6fe679316254898a
MD5 cec62e42019430ba202ec1f139c3f5e7
BLAKE2b-256 e2bda0fdaa698e1ef4f3fe773d5c54d00554a193ef87dfd86024dda5d8f22389

See more details on using hashes here.

File details

Details for the file pylance-0.10.14-cp38-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.14-cp38-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4714f20b925d8ae98713fa777b01f10d959f46eeef2e550d4de8b892df77bb9b
MD5 090fcf9532d52a4ef0e603fcb94bac48
BLAKE2b-256 c5bb243c65ee7e42e55fa601cb15f2f01a5855c37e2904cc59f6892709f6b3da

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page