Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.10.15-cp38-abi3-win_amd64.whl (22.9 MB view details)

Uploaded CPython 3.8+ Windows x86-64

pylance-0.10.15-cp38-abi3-manylinux_2_28_x86_64.whl (22.6 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.28+ x86-64

pylance-0.10.15-cp38-abi3-manylinux_2_24_aarch64.whl (20.8 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.24+ ARM64

pylance-0.10.15-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.6 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

pylance-0.10.15-cp38-abi3-macosx_11_0_arm64.whl (19.7 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

pylance-0.10.15-cp38-abi3-macosx_10_15_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.8+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.10.15-cp38-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.10.15-cp38-abi3-win_amd64.whl
  • Upload date:
  • Size: 22.9 MB
  • Tags: CPython 3.8+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for pylance-0.10.15-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 f64395a409ea5a45f2a5982ffff30f72d6e4652d0c97571257f286129514c645
MD5 bec6997b3fab09b0b815f33cacd5c633
BLAKE2b-256 1864e99ed7d4e5ef2f441a4cd5729c8bdf93a887de27ecbeb13d60e303a8e504

See more details on using hashes here.

File details

Details for the file pylance-0.10.15-cp38-abi3-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.15-cp38-abi3-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4c5b1b413d2f691b54103d8998a527bafc37b73e688f8a2bcbb67e997e185c99
MD5 49d14d398f4dd57bac36752b23f7b8a0
BLAKE2b-256 ca7eb2f78f02dff14be51cbda192460f717da42f1e644ebb47889fccf635850c

See more details on using hashes here.

File details

Details for the file pylance-0.10.15-cp38-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.10.15-cp38-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 761ad0ab9adf770a31da82db8ddfd134c913c883471a8d96eeed4b570597a495
MD5 63d557d85e1cc5331cb9bf4c83691bcd
BLAKE2b-256 561a82a1f5aa5102b2cd6cf569ecd99633c8dee1d9662aa0131a6ac7563ebffb

See more details on using hashes here.

File details

Details for the file pylance-0.10.15-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.15-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 af1df4248a24bd2b74f35ca5c5e26abb8da678a0dcf8317ea3a0205a8143b462
MD5 8353e7b49ec5420d03c34bb071ed87ce
BLAKE2b-256 ff00b56c78f79a14ffc9a0e95fe2d7d2c216bdab05c4391e596c2d8518b8c4c3

See more details on using hashes here.

File details

Details for the file pylance-0.10.15-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.10.15-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 16d5ea7fc419fb30f7c2ee4eaf28ce3b165ae0a3ddf784466f41811db715a2f3
MD5 fa9db38256b8643491d2077f47efc96a
BLAKE2b-256 8859bd5f7ea9b21a6e494aaf7f73f6d3e76deb6010ae1ff534855fe8bb398ad0

See more details on using hashes here.

File details

Details for the file pylance-0.10.15-cp38-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.15-cp38-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ab5af76f50b3d33478e67e96378e2b3c17d86c688a56ed9a323d41bf5518adb6
MD5 d177abc7236868c9a514a7c54f7aaca6
BLAKE2b-256 ef77a217b8b89521a63a9972b1f4b5467efb165a4511f0135e1d6de3ec06e38e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page