Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.10.3-cp38-abi3-win_amd64.whl (22.1 MB view details)

Uploaded CPython 3.8+ Windows x86-64

pylance-0.10.3-cp38-abi3-manylinux_2_24_aarch64.whl (20.0 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.24+ ARM64

pylance-0.10.3-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.5 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

pylance-0.10.3-cp38-abi3-macosx_11_0_arm64.whl (18.8 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

pylance-0.10.3-cp38-abi3-macosx_10_15_x86_64.whl (20.4 MB view details)

Uploaded CPython 3.8+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.10.3-cp38-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.10.3-cp38-abi3-win_amd64.whl
  • Upload date:
  • Size: 22.1 MB
  • Tags: CPython 3.8+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for pylance-0.10.3-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 241923d6569e40c6f53556e75d51393cf589751bebac065b03585184da3d63dc
MD5 3be19a546d89ad260b4867a5bcb1fcaf
BLAKE2b-256 9543f66570c6e38fcbde27a8f336f5f71484f6375ded852ee9c7b88c39f71dd3

See more details on using hashes here.

File details

Details for the file pylance-0.10.3-cp38-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.10.3-cp38-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 3401512406d25c111272874fc5ea372c9bee74cb1d2740bdedab2262dd6ecd98
MD5 4a07274dea2990c58fc34567196d4720
BLAKE2b-256 faeb01ab18db7fdd6a5c9db69fc1c707005fcb2b0634af297323bdc522652584

See more details on using hashes here.

File details

Details for the file pylance-0.10.3-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.3-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 01efe7c66223a5efd7044b11ada9d5f808f57105dfc7576a057612ee209fe23b
MD5 e243268aedb2d10744a63d6aed75f60d
BLAKE2b-256 ea0a46b9ee9cd29bed54d7fc6b7996cd4f9b206d58f86b8373ec73f2f15070f8

See more details on using hashes here.

File details

Details for the file pylance-0.10.3-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.10.3-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5bb7dc607acd1604da9b79662f9ba3423271232120bba4a84d0cf867909620cf
MD5 331e9e73a118c3c77a82499d93bdc5bd
BLAKE2b-256 1d436f200cc9c85a967b8648394890b49dcf41c706328ad5764a3d30a3895cba

See more details on using hashes here.

File details

Details for the file pylance-0.10.3-cp38-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.3-cp38-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ae1d26380ab17dea81c78b27c7ce3c9dd3f153a743fbeb88b8f00249ffad59f3
MD5 60a51b52c9803736f705c6265adcd641
BLAKE2b-256 80e0cf4be4b9bfd11c0681bd008614aaffd3dee13dedfe91862fab972d1b4ea2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page