Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.10.9-cp38-abi3-win_amd64.whl (22.4 MB view details)

Uploaded CPython 3.8+ Windows x86-64

pylance-0.10.9-cp38-abi3-manylinux_2_28_x86_64.whl (22.1 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.28+ x86-64

pylance-0.10.9-cp38-abi3-manylinux_2_24_aarch64.whl (20.4 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.24+ ARM64

pylance-0.10.9-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.1 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

pylance-0.10.9-cp38-abi3-macosx_11_0_arm64.whl (19.3 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

pylance-0.10.9-cp38-abi3-macosx_10_15_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.8+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.10.9-cp38-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.10.9-cp38-abi3-win_amd64.whl
  • Upload date:
  • Size: 22.4 MB
  • Tags: CPython 3.8+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for pylance-0.10.9-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 76d2d34b4738163f669c8a88e13cc327390753e25283e80b349675701171d823
MD5 417e6677b640ec105dbb7ab6a2e33284
BLAKE2b-256 d0fa33d12a2d9ab826f8a0bd1aab1f7a3df9efce483ca1907a88527f929f79f9

See more details on using hashes here.

File details

Details for the file pylance-0.10.9-cp38-abi3-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.9-cp38-abi3-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 cf9672fbcdb4e340eef01116167ea89d165511ca8cf8d9659457f4a354c065b7
MD5 2b6c73476f86a6a6d233926d82bdc896
BLAKE2b-256 26ab75ccdab02aa79fc3c412693909d7036b7fc5e6ad218645799c8f372956e2

See more details on using hashes here.

File details

Details for the file pylance-0.10.9-cp38-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.10.9-cp38-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 04a27bb2e9838782660291f70444b07a424f4642abceb13e3a337851e1a48eb3
MD5 c9261f39f4f25b35ab8e6cfdfff99490
BLAKE2b-256 ab44b171892e09f3897b297be767f615b3259107f9a70799375660e5e25b5f9e

See more details on using hashes here.

File details

Details for the file pylance-0.10.9-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.9-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bf42e85c0833e247af1ab5b94246d09f68d3d5f1e5d8839adfabc9960a685da7
MD5 00748a755014ff140ae424f8d235efa3
BLAKE2b-256 1178c59e363578c89b6836ac9af13e988923328b31c682c5cbb0a88d8a988861

See more details on using hashes here.

File details

Details for the file pylance-0.10.9-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.10.9-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 32834e6ab22788005c9606c8d49ea2886dfcf3f6f657b48711f7bed411177f31
MD5 0a3fa45f18f5efb9e1de88f2be246c68
BLAKE2b-256 bce81e7832fd4a690c8d0dc7a6de384563818e01950d6fdaed5cd7998e277dba

See more details on using hashes here.

File details

Details for the file pylance-0.10.9-cp38-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.10.9-cp38-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6187d2044ca9de8795e284b4f754b1d63780384c22cbee46e4759fc9ca32152a
MD5 8583f46b944734f24f0e7f3cef3a9075
BLAKE2b-256 5c860575b5ed39d56d21a679a5e785d35da0a4d5f85ccc4cadd1051f4ffa18ee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page