Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.18.0-cp39-abi3-win_amd64.whl (27.2 MB view details)

Uploaded CPython 3.9+ Windows x86-64

pylance-0.18.0-cp39-abi3-manylinux_2_28_x86_64.whl (29.2 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.28+ x86-64

pylance-0.18.0-cp39-abi3-manylinux_2_24_aarch64.whl (28.4 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.24+ ARM64

pylance-0.18.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (29.2 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

pylance-0.18.0-cp39-abi3-macosx_11_0_arm64.whl (25.5 MB view details)

Uploaded CPython 3.9+ macOS 11.0+ ARM64

pylance-0.18.0-cp39-abi3-macosx_10_15_x86_64.whl (27.5 MB view details)

Uploaded CPython 3.9+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.18.0-cp39-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.18.0-cp39-abi3-win_amd64.whl
  • Upload date:
  • Size: 27.2 MB
  • Tags: CPython 3.9+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pylance-0.18.0-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 4ac514394900f39f75265e81f61a7880d1de66dde05466291a8d50ece8eb0eff
MD5 10b0c032a64c07ae74196253b447525a
BLAKE2b-256 25c919bbd3cd176f46e948c4fa4baac4ddfdfb33bade57bca2429a9a9d820d0b

See more details on using hashes here.

File details

Details for the file pylance-0.18.0-cp39-abi3-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.18.0-cp39-abi3-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 dbdb4826f22be603ee873545515acc5c29fff6cd709eb550a4eaa1bf3cb4a554
MD5 9c7798f861e4fdf385ca80fe6b300042
BLAKE2b-256 8dff004244559bf5b2d68f0d1b474172614a66f043626c266de9d981a85b8608

See more details on using hashes here.

File details

Details for the file pylance-0.18.0-cp39-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.18.0-cp39-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 e0ae9922f303fb21e8458bc266eee95d160cb128db73ae04b4eac9c81d24cda8
MD5 98cf258aca748e3c946a94b11033c144
BLAKE2b-256 2979ffc89067fd18a8e1a7c22d877f084c0752a726437cf4a7439197f470dc81

See more details on using hashes here.

File details

Details for the file pylance-0.18.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.18.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d7ee6d9be4fbb7b9d57ee6a85410d1c096381a1698ed99d96a2198d23534e8fa
MD5 04d5c1fab80b28261dc0d5e0f42bb6fc
BLAKE2b-256 35843caf0f92744445c1ddb3c13cb6f0263de17e861f65e75a47bd6071e3986f

See more details on using hashes here.

File details

Details for the file pylance-0.18.0-cp39-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.18.0-cp39-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3c09f06c7bb82a7f0c32e6ba9c6bde9c0c248907ed14249f2baa0f136c76cad8
MD5 f7137e757561ab3e09d6715c6b16a002
BLAKE2b-256 9701b4ae258ece65f5a30506b14a2fd4efdb3a41428ac5103fae569c7c50dff3

See more details on using hashes here.

File details

Details for the file pylance-0.18.0-cp39-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.18.0-cp39-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b0267edd2430f55eb517537bc0a3352dd59ef9b9111a6408baf9e49fc561e49e
MD5 1d3a53ec12798b655b7644bcf3af91b5
BLAKE2b-256 e28254a73f338fc6004cb86a44bddd5da4c6620c2a69157e58e8be8363ea622e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page