Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.18.2-cp39-abi3-win_amd64.whl (28.1 MB view details)

Uploaded CPython 3.9+ Windows x86-64

pylance-0.18.2-cp39-abi3-manylinux_2_28_x86_64.whl (30.0 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.28+ x86-64

pylance-0.18.2-cp39-abi3-manylinux_2_24_aarch64.whl (29.2 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.24+ ARM64

pylance-0.18.2-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.1 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

pylance-0.18.2-cp39-abi3-macosx_11_0_arm64.whl (26.3 MB view details)

Uploaded CPython 3.9+ macOS 11.0+ ARM64

pylance-0.18.2-cp39-abi3-macosx_10_15_x86_64.whl (28.3 MB view details)

Uploaded CPython 3.9+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.18.2-cp39-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.18.2-cp39-abi3-win_amd64.whl
  • Upload date:
  • Size: 28.1 MB
  • Tags: CPython 3.9+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pylance-0.18.2-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 72796676d7647ba9f6e86531daf67880f5e69ba8f842e237ad0c1ca419c6378c
MD5 0cf8d28b4db6c4b7042a0d02d51ea738
BLAKE2b-256 811b9dcb3d95fd08b2a2ce7f972a3dce25551b29a9fd0e1ee22e39d8bec36b3e

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.18.2-cp39-abi3-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.18.2-cp39-abi3-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a913920f591d8404c46c74e3911fe0c29d47b923b9c3c7e521d3354c1663d812
MD5 a86708e3aa38b434390ace5df04fb647
BLAKE2b-256 0540648f74da0449699b40792b7b9d6db8aedc80fa4e25c61e1f75a8299ec8c5

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.18.2-cp39-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.18.2-cp39-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 f37fb7ad0e53076c731014c210a45919f3b2620c967e2f62cf8b7c26fdc9aace
MD5 81c9180fc2c9b04d7093277576903a85
BLAKE2b-256 05c083519992d4a56989fc37fa4baf00ba8c5c8f3bea0cc83a85359751572d64

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.18.2-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.18.2-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 89dcf2dadee940ea86ac0b3bf7ba81c68e9774a449d8de206bc60cdc8804b853
MD5 45718fed2bddd5b99bbe01f302384096
BLAKE2b-256 0a1f4e6df8eba3c9d78bea8c0713e07ae500d837247d9697c0612720d7f048c7

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.18.2-cp39-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.18.2-cp39-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c4c4049eb6a6075cef721a20dd28ccba6d89b66f13e8d20ef65a284ae1c02e30
MD5 f51c132bc4dc3b1a29d30889869ddbdb
BLAKE2b-256 da9fd8f6ed331d6d57b53616bdce1d88efe724335663ee3b6337f1412b104e42

See more details on using hashes here.

Provenance

File details

Details for the file pylance-0.18.2-cp39-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.18.2-cp39-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 017422b058724dfbe8426c1ac42f0ede77324f3783e177cb4239dc034758b50b
MD5 7caaf12c23eec25942811fda1d7434c1
BLAKE2b-256 250a16ae3434c8747028b2adc14cf9e15982005168b173ffa7f181e62af78537

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page