Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.8.15-cp38-abi3-win_amd64.whl (19.9 MB view details)

Uploaded CPython 3.8+ Windows x86-64

pylance-0.8.15-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

pylance-0.8.15-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (17.6 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ ARM64

pylance-0.8.15-cp38-abi3-macosx_11_0_arm64.whl (16.7 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

pylance-0.8.15-cp38-abi3-macosx_10_15_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.8+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.8.15-cp38-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.8.15-cp38-abi3-win_amd64.whl
  • Upload date:
  • Size: 19.9 MB
  • Tags: CPython 3.8+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for pylance-0.8.15-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 0077ff0afdc7e36b83bd040e2f899bc67ec9a5d04e300e3a1bff91e6d18c638c
MD5 bc4cceec73083cf8f1ed0b4401075387
BLAKE2b-256 c0fbdfac77ffe63d85e2028591d14dd7083592ecbde5a6d6d34d78d9157c5c9a

See more details on using hashes here.

File details

Details for the file pylance-0.8.15-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.8.15-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 34d26e08976ef53e0443bbb7b77ac120e43fd75b607717c69d1b9b08cf6fbc99
MD5 71308692b87f75517f84c5213545cbb8
BLAKE2b-256 ab323f9d659abf2f8cd33d5d3ddad772c5f0bb9861f3a45492728bd8112cbab1

See more details on using hashes here.

File details

Details for the file pylance-0.8.15-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.8.15-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 87acc461f80950da16faaad8f965360835428ac52761e2d5d2a153111f6b0542
MD5 d0b829b0adac2f27ef9d1fe9bfe0347f
BLAKE2b-256 87235cc3831b6d8b4dc971755ba9761d7c2d2ee5857abc48ecb3158403c0263e

See more details on using hashes here.

File details

Details for the file pylance-0.8.15-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.8.15-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dab1368830f636bd55a9d21f7394197242df62a6dbfa6b2eeec2f4f875afcc03
MD5 592b36b5423d2908773b8a52349cc486
BLAKE2b-256 39c34d2a568876e355a354e81cab36855249ccc2001e8e6bffbee52078b191f8

See more details on using hashes here.

File details

Details for the file pylance-0.8.15-cp38-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.8.15-cp38-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c5d61de87efdabe8e73ad5f309c0773738cfd0d4bdd7eb434a72ae2a22f65077
MD5 44302438bb054af925ff28c84b1ab38a
BLAKE2b-256 c3fc64e68bd2f3decee268234cde630bc12cfe19be34fe6679b904e9a0b6f799

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page