Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.8.20-cp38-abi3-win_amd64.whl (20.1 MB view details)

Uploaded CPython 3.8+ Windows x86-64

pylance-0.8.20-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.4 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

pylance-0.8.20-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (17.8 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ ARM64

pylance-0.8.20-cp38-abi3-macosx_11_0_arm64.whl (16.9 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

pylance-0.8.20-cp38-abi3-macosx_10_15_x86_64.whl (18.5 MB view details)

Uploaded CPython 3.8+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.8.20-cp38-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.8.20-cp38-abi3-win_amd64.whl
  • Upload date:
  • Size: 20.1 MB
  • Tags: CPython 3.8+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for pylance-0.8.20-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 0d6efdea87441bf57be485ad19e08ffb97caf0779ba88ee6c6149e94cf946bc4
MD5 ac84101f1323bf912d628375c00dc200
BLAKE2b-256 2eb089c2a3752e876721953a52d0ea68afe36632d7051dfdf2da30e410924d76

See more details on using hashes here.

File details

Details for the file pylance-0.8.20-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.8.20-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e9bb2ef46ed207a96612ee40f41e8806ae8fe6461720d2385965a9a1ad6e1c15
MD5 5a40ba901b115c200541d05e7f3c2572
BLAKE2b-256 7140797ef143d5d1428929c38138c3025006199627e45a90b3ca31cbafe1de6b

See more details on using hashes here.

File details

Details for the file pylance-0.8.20-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.8.20-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 81c220fdb1bf6ad933dffdf4b0a157af851e2ee2a20b09a7599ab275beb3bd4d
MD5 71174eb6c233886ed704f505bde9e2b4
BLAKE2b-256 73f1a75eafd48b1519f7a13721d693c47d84c65efaffe77ea76ff0074faa3600

See more details on using hashes here.

File details

Details for the file pylance-0.8.20-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.8.20-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a8b2e48974011796192dcf5a70d5282891a673c4295cd6dbdcba17f11e4ce1c3
MD5 fcd2b1f820526aa2323c0c808446bdb2
BLAKE2b-256 5c9494da15c72c1a184fdb00e0412e1bfb53bf40f9197ee1ccc2c3b1f6f6abfd

See more details on using hashes here.

File details

Details for the file pylance-0.8.20-cp38-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.8.20-cp38-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6c945def958e6fea878d6c127a116117a491f306c0f7405e1d7de45778e50639
MD5 8fc3b28162f84bd6f66d7eb574dc9be0
BLAKE2b-256 780ef91b1db58569f3d97dd84c01935fe0cc28ee7584b26738598a7141c14a43

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page