Search, download and preprocess Landsat imagery
Project description
Description
pylandsat is a Python package that allows you to search and download Landsat scenes from the public dataset hosted on Google Cloud. Additionally, it includes a set of classes and methods to access and preprocess the downloaded scenes.
Only Landsat Collection 1 is supported, i.e. level-1 data products from the following sensors and satellite missions:
- Landsat 8 OLI/TIRS
- Landsat 7 ETM+
- Landsat 4-5 TM
- Landsat 1-5 MSS
Installation
pip install pylandsat
Command-line interface
Download one or multiple scenes
Usage
Usage: pylandsat download [OPTIONS] [PRODUCTS]...
Download a Landsat product according to its identifier.
Options:
-d, --output-dir PATH Output directory.
-f, --files TEXT Comma-separated list of files to download.
--help Show this message and exit.
Examples
# Download an entire product in the current directory
pylandsat download LE07_L1TP_205050_19991104_20170216_01_T1
# Download multiple products
pylandsat download \
LE07_L1TP_205050_19991104_20170216_01_T1 \
LE07_L1TP_206050_19991111_20170216_01_T1
# Download only the blue, green and red bands
pylandsat download --files B1.TIF,B2.TIF,B3.TIF \
LE07_L1TP_205050_19991104_20170216_01_T1
# Download only quality band
pylandsat download --files BQA.TIF \
LE07_L1TP_205050_19991104_20170216_01_T1
Search for scenes
To allow large and fast queries, pylandsat works with a local dump of the Landsat catalog hosted on Google Cloud. As such, an initial sync is required :
# Sync local Landsat catalog
pylandsat sync-database
# Force update
pylandsat sync-database -f
The database is stored in a local directory that can be displayed using the following command :
pylandsat print-datadir
Once the database has been created, the local catalog can be queried.
Usage
Usage: pylandsat search [OPTIONS]
Search for scenes in the Google Landsat Public Dataset catalog.
Options:
-b, --begin TEXT Begin search date (YYYY-MM-DD).
-e, --end TEXT End search date (YYYY-MM-DD).
-g, --geojson PATH Area of interest (GeoJSON file).
-l, --latlon FLOAT... Point of interest (decimal lat/lon).
-p, --path INTEGER WRS2 path.
-r, --row INTEGER WRS2 row.
-c, --clouds FLOAT Max. cloud cover percentage.
-s, --sensors TEXT Comma-separated list of possible sensors.
-t, --tiers TEXT Comma-separated list of possible collection tiers.
--slcoff Include SLC-off LE7 scenes.
-o, --output PATH Output CSV file.
--help Show this message and exit.
At least three options must be provided: --begin
and --end
(i.e. the period of interest), and a geographic extent (--path
and --row
, --latlon
, --address
or --geojson
). By default, pylandsat lists all the product IDs matching the query. The full response can be exported to a CSV file using the --output
option. Note that is the spatial extent is provided as a GeoJSON file, only the first feature will be considered.
Examples
# If only the year is provided, date is set to January 1st
pylandsat search \
--begin 1999 --end 2000 \
--path 206 --row 50 \
--clouds 0
# Using latitude and longitude
pylandsat search \
--begin 2000 --end 2010 \
--latlon 50.85 4.34
# Using a polygon in a GeoJSON file
pylandsat search \
--begin 2000 --end 2010 \
--geojson brussels.geojson
# Using an address that will be geocoded
pylandsat search \
--begin 2000 --end 2010 \
--address 'Brussels, Belgium'
# Limit to TM and ETM sensors
pylandsat search \
--begin 1990 --end 2010 \
--address 'Brussels, Belgium' \
--sensors LT04,LT05,LE07
# Export results into a CSV file
pylandsat search \
--begin 1990 --end 2010 \
--address 'Brussels, Belgium' \
--sensors LT04,LT05,LE07 \
--output scenes.csv
# List available sensors, i.e. possible values
# for the `--sensors` option
pylandsat list-sensors
# List available files for a given sensor
pylandsat list-available-files LT05
Python API
Search the catalog
from datetime import datetime
from shapely.geometry import Point
from pylandsat import Catalog, Product
catalog = Catalog()
begin = datetime(2010, 1, 1)
end = datetime(2020, 1, 1)
geom = Point(4.34, 50.85)
# Results are returned as a list
scenes = catalog.search(
begin=begin,
end=end,
geom=geom,
sensors=['LE07', 'LC08']
)
# Get the product ID of the first scene
product_id = scenes[0].get("product_id")
# Download the scene
product = Product(product_id)
product.download(out_dir='data')
# The output of catalog.search() can be converted to a DataFrame
# for further processing. For instance:
# Get the product ID of the scene with the lowest cloud cover
import pandas as pd
df = pd.DataFrame.from_dict(scenes)
df.set_index(["product_id"], inplace=True)
df = df.sort_values(by='cloud_cover', ascending=True)
product_id = df.index[0]
Load and preprocess data
import numpy as np
import rasterio
import matplotlib.pyplot as plt
from pylandsat import Scene
# Access data
scene = Scene('data/LE07_L1TP_205050_19991104_20170216_01_T1')
print(scene.available_bands())
print(scene.product_id)
print(scene.sensor)
print(scene.date)
# Access MTL metadata
print(scene.mtl['IMAGE_ATTRIBUTES']['CLOUD_COVER_LAND'])
# Quality band
plt.imshow(scene.quality.read())
# Access band data
nir = scene.nir.read(1)
red = scene.red.read(1)
ndvi = (nir + red) / (nir - red)
# Access band metadata
print(scene.nir.bname)
print(scene.nir.fname)
print(scene.nir.profile)
print(scene.nir.width, scene.nir.height)
print(scene.nir.crs)
# Use reflectance values instead of DN
nir = scene.nir.to_reflectance()
# ..or brightness temperature
tirs = scene.tirs.to_brightness_temperature()
# Save file to disk
with rasterio.open('temperature.tif', 'w', **scene.tirs.profile) as dst:
dst.write(tirs, 1)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pylandsat-0.6.0.tar.gz
.
File metadata
- Download URL: pylandsat-0.6.0.tar.gz
- Upload date:
- Size: 18.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.5 CPython/3.8.8 Linux/5.4.0-1040-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 90e33bffd3829e351bbc622c455ee58d09e0842497f5f1a78ad8a94cfaa0e7a3 |
|
MD5 | 15f7a42cedc3ce79f073c3986f662bfb |
|
BLAKE2b-256 | 70a4a3524c145ce77800136fffd7513686a2fa86bdd59a9c250c151203d0f35a |
File details
Details for the file pylandsat-0.6.0-py3-none-any.whl
.
File metadata
- Download URL: pylandsat-0.6.0-py3-none-any.whl
- Upload date:
- Size: 19.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.5 CPython/3.8.8 Linux/5.4.0-1040-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 149a81613100a80f620522c6773e48e76fba23c34367d74431816bbde53c0c29 |
|
MD5 | f87af5a53fa870ffeecba943f9745638 |
|
BLAKE2b-256 | c110fc2ff06b99709c673db819e665a00292c977876cf9d9874bcdc76b68fe5b |