Skip to main content
Help the Python Software Foundation raise $60,000 USD by December 31st!  Building the PSF Q4 Fundraiser

Open-source Python library to compute landscape metrics

Project description

PyPI version fury.io Conda Downloads Documentation Status Build Status Coverage Status GitHub license

PyLandStats

Open-source Pythonic library to compute landscape metrics within the PyData stack (NumPy, pandas, matplotlib...)

Citation: Bosch M. 2019. "PyLandStats: An open-source Pythonic library to compute landscape metrics". PLOS ONE, 14(12), 1-19. doi.org/10.1371/journal.pone.0225734

Features

  • Read GeoTiff files of land use/cover:

    import pylandstats as pls
    
    ls = pls.read_geotiff('data/vaud_g100_clc00_V18_5.tif')
    
    ls.plot_landscape(legend=True)
    

    landscape-vaud

  • Compute pandas data frames of landscape metrics at the patch, class and landscape level:

    class_metrics_df = ls.compute_class_metrics_df(metrics=['proportion_of_landscape', 'edge_density'])
    class_metrics_df
    
    class_val proportion_of_landscape edge_density
    1 7.702 4.459
    2 92.298 4.459
  • Analyze the spatio-temporal evolution of landscapes:

    input_fnames = [
        'data/vaud_g100_clc00_V18_5.tif',
        'data/vaud_g100_clc06_V18_5a.tif',
        'data/vaud_g100_clc12_V18_5a.tif'
    ]
    
    sta = pls.SpatioTemporalAnalysis(
        input_fnames, metrics=[
            'proportion_of_landscape',
            'edge_density',
            'fractal_dimension_am',
            'landscape_shape_index',
            'shannon_diversity_index'
        ], classes=[1], dates=[2000, 2006, 2012], 
    )
    
    fig, axes = plt.subplots(1, 3, figsize=(15, 5))
    for metric, ax in zip(
        ['proportion_of_landscape', 'edge_density', 'fractal_dimension_am'], axes):
        sta.plot_metric(metric, class_val=1, ax=ax)
    fig.suptitle('Class-level metrics (urban)')
    

    spatiotemporal-analysis

  • Zonal analysis of landscapes

See the documentation and the pylandstats-notebooks repository for a more complete overview.

Installation

The easiest way to install PyLandStats is with conda:

$ conda install -c conda-forge pylandstats

which will install PyLandStats and all of its dependencies. Alternatively, you can install PyLandStats using pip:

$ pip install pylandstats

Nevertheless, note that in order to define zones by vector geometries in ZonalAnalysis, or in order to use the the BufferAnalysis and SpatioTemporalBufferAnalysis classes, PyLandStats requires geopandas, which cannot be installed with pip. If you already have the dependencies for geopandas installed in your system, you might then install PyLandStats with the geo extras as in:

$ pip install pylandstats[geo]

and you will be able to use the aforementioned features (without having to use conda).

Acknowledgments

  • The computation of the adjacency matrix in transonic has been implemented by Pierre Augier (paugier).
  • With the support of the École Polytechnique Fédérale de Lausanne (EPFL)
  • The Corine Land Cover datasets used for the test datasets were produced with funding by the European Union

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pylandstats, version 2.2.1
Filename, size File type Python version Upload date Hashes
Filename, size pylandstats-2.2.1.tar.gz (48.2 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page