Skip to main content

A Python framework for decoding JPEG and decoding/encoding DICOM RLE data, with a focus on supporting pydicom

Project description

codecov Build Status PyPI version Python versions

pylibjpeg

A Python 3.6+ framework for decoding JPEG images and decoding/encoding RLE datasets, with a focus on providing support for pydicom.

Installation

Installing the current release

pip install pylibjpeg

Installing the development version

Make sure Git is installed, then

git clone https://github.com/pydicom/pylibjpeg
python -m pip install pylibjpeg

Plugins

One or more plugins are required before pylibjpeg is able to handle JPEG images or RLE datasets. To handle a given format or DICOM Transfer Syntax you first have to install the corresponding package:

Supported Formats

Format Decode? Encode? Plugin Based on
JPEG, JPEG-LS and JPEG XT Yes No pylibjpeg-libjpeg libjpeg
JPEG 2000 Yes No pylibjpeg-openjpeg openjpeg
RLE Lossless (PackBits) Yes Yes pylibjpeg-rle -

DICOM Transfer Syntax

UID Description Plugin
1.2.840.10008.1.2.4.50 JPEG Baseline (Process 1) pylibjpeg-libjpeg
1.2.840.10008.1.2.4.51 JPEG Extended (Process 2 and 4) pylibjpeg-libjpeg
1.2.840.10008.1.2.4.57 JPEG Lossless, Non-Hierarchical (Process 14) pylibjpeg-libjpeg
1.2.840.10008.1.2.4.70 JPEG Lossless, Non-Hierarchical, First-Order Prediction
(Process 14, Selection Value 1)
pylibjpeg-libjpeg
1.2.840.10008.1.2.4.80 JPEG-LS Lossless pylibjpeg-libjpeg
1.2.840.10008.1.2.4.81 JPEG-LS Lossy (Near-Lossless) Image Compression pylibjpeg-libjpeg
1.2.840.10008.1.2.4.90 JPEG 2000 Image Compression (Lossless Only) pylibjpeg-openjpeg
1.2.840.10008.1.2.4.91 JPEG 2000 Image Compression pylibjpeg-openjpeg
1.2.840.10008.1.2.5 RLE Lossless pylibjpeg-rle

If you're not sure what the dataset's Transfer Syntax UID is, it can be determined with:

>>> from pydicom import dcmread
>>> ds = dcmread('path/to/dicom_file')
>>> ds.file_meta.TransferSyntaxUID.name

Usage

Decoding

With pydicom

Assuming you have pydicom v2.1+ and suitable plugins installed:

from pydicom import dcmread
from pydicom.data import get_testdata_file

# With the pylibjpeg-libjpeg plugin
ds = dcmread(get_testdata_file('JPEG-LL.dcm'))
jpg_arr = ds.pixel_array

# With the pylibjpeg-openjpeg plugin
ds = dcmread(get_testdata_file('JPEG2000.dcm'))
j2k_arr = ds.pixel_array

# With the pylibjpeg-rle plugin and pydicom v2.2+
ds = dcmread(get_testdata_file('OBXXXX1A_rle.dcm'))
# pydicom defaults to the numpy handler for RLE so need
# to explicitly specify the use of pylibjpeg
ds.decompress("pylibjpeg")
rle_arr = ds.pixel_array

For datasets with multiple frames you can reduce your memory usage by processing each frame separately using the generate_frames() generator function:

from pydicom import dcmread
from pydicom.data import get_testdata_file
from pydicom.pixel_data_handlers.pylibjpeg_handler import generate_frames

ds = dcmread(get_testdata_file('color3d_jpeg_baseline.dcm'))
frames = generate_frames(ds)
arr = next(frames)
Standalone JPEG decoding

You can also just use pylibjpeg to decode JPEG images to a numpy ndarray, provided you have a suitable plugin installed:

from pylibjpeg import decode

# Can decode using the path to a JPG file as str or path-like
arr = decode('filename.jpg')

# Or a file-like...
with open('filename.jpg', 'rb') as f:
    arr = decode(f)

# Or bytes...
with open('filename.jpg', 'rb') as f:
    arr  = decode(f.read())

Encoding

With pydicom

Assuming you have pydicom v2.2+ and suitable plugins installed:

from pydicom import dcmread
from pydicom.data import get_testdata_file
from pydicom.uid import RLELossless

ds = dcmread(get_testdata_file("CT_small.dcm"))

# Encode in-place using RLE Lossless and update the dataset
# Updates the Pixel Data, Transfer Syntax UID and Planar Configuration
ds.compress(uid)

# Save compressed
ds.save_as("CT_small_rle.dcm")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pylibjpeg-1.3.0.tar.gz (25.0 kB view details)

Uploaded Source

Built Distribution

pylibjpeg-1.3.0-py3-none-any.whl (28.1 kB view details)

Uploaded Python 3

File details

Details for the file pylibjpeg-1.3.0.tar.gz.

File metadata

  • Download URL: pylibjpeg-1.3.0.tar.gz
  • Upload date:
  • Size: 25.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for pylibjpeg-1.3.0.tar.gz
Algorithm Hash digest
SHA256 5115ee908301737874312d28804db5891bb8e96ea8f9caf90d34621e8ca67879
MD5 d831e1700b7d3977d6efb1e6cca7e53d
BLAKE2b-256 c5e0f4c0a902bd9956c2c2aa032f25cdb4777fde6848a452d5b661ef97b2e01f

See more details on using hashes here.

File details

Details for the file pylibjpeg-1.3.0-py3-none-any.whl.

File metadata

  • Download URL: pylibjpeg-1.3.0-py3-none-any.whl
  • Upload date:
  • Size: 28.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for pylibjpeg-1.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0436dfbe1141e9ef360b9e94546d95352257f96eabdcdab638fde31c0f816e18
MD5 ada2ee3a0945b10c18c9937418060671
BLAKE2b-256 df05b6599eac7d69eb66c49e907243188ef502d006cde42368c60fd52d9fb478

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page