Skip to main content

Python bindings for llama.cpp

Project description

PyLLaMACpp

License: MIT PyPi version Downloads Open In Colab

  • Python bindings for llama.cpp.
  • If you are looking to run Falcon models, take a look at the ggllm branch.

For those who don't know, llama.cpp is a port of Facebook's LLaMA model in pure C/C++:

  • Without dependencies
  • Apple silicon first-class citizen - optimized via ARM NEON
  • AVX2 support for x86 architectures
  • Mixed F16 / F32 precision
  • 4-bit quantization support
  • Runs on the CPU

Table of contents

Installation

  1. The easy way is to install the prebuilt wheels
pip install pyllamacpp

However, the compilation process of llama.cpp is taking into account the architecture of the target CPU, so you might need to build it from source:

pip install git+https://github.com/abdeladim-s/pyllamacpp.git

:warning: Note

This PR introduced some breaking changes. If you want to use older models, use version 2.2.0:

pip install pyllamacpp==2.2.0

CLI

You can run the following simple command line interface to test the package once it is installed:

pyllamacpp path/to/model.bin
pyllamacpp -h

usage: pyllamacpp [-h] [--n_ctx N_CTX] [--n_parts N_PARTS] [--seed SEED] [--f16_kv F16_KV] [--logits_all LOGITS_ALL]
                  [--vocab_only VOCAB_ONLY] [--use_mlock USE_MLOCK] [--embedding EMBEDDING] [--n_predict N_PREDICT] [--n_threads N_THREADS]
                  [--repeat_last_n REPEAT_LAST_N] [--top_k TOP_K] [--top_p TOP_P] [--temp TEMP] [--repeat_penalty REPEAT_PENALTY]
                  [--n_batch N_BATCH]
                  model

This is like a chatbot, You can start the conversation with `Hi, can you help me ?` Pay attention though that it may hallucinate!

positional arguments:
  model                 The path of the model file

options:
  -h, --help            show this help message and exit
  --n_ctx N_CTX         text context
  --n_parts N_PARTS
  --seed SEED           RNG seed
  --f16_kv F16_KV       use fp16 for KV cache
  --logits_all LOGITS_ALL
                        the llama_eval() call computes all logits, not just the last one
  --vocab_only VOCAB_ONLY
                        only load the vocabulary, no weights
  --use_mlock USE_MLOCK
                        force system to keep model in RAM
  --embedding EMBEDDING
                        embedding mode only
  --n_predict N_PREDICT
                        Number of tokens to predict
  --n_threads N_THREADS
                        Number of threads
  --repeat_last_n REPEAT_LAST_N
                        Last n tokens to penalize
  --top_k TOP_K         top_k
  --top_p TOP_P         top_p
  --temp TEMP           temp
  --repeat_penalty REPEAT_PENALTY
                        repeat_penalty
  --n_batch N_BATCH     batch size for prompt processing

Tutorial

Quick start

from pyllamacpp.model import Model

model = Model(model_path='/path/to/model.bin')
for token in model.generate("Tell me a joke ?\n"):
    print(token, end='', flush=True)

Interactive Dialogue

You can set up an interactive dialogue by simply keeping the model variable alive:

from pyllamacpp.model import Model

model = Model(model_path='/path/to/model.bin')
while True:
    try:
        prompt = input("You: ", flush=True)
        if prompt == '':
            continue
        print(f"AI:", end='')
        for token in model.generate(prompt):
            print(f"{token}", end='', flush=True)
        print()
    except KeyboardInterrupt:
        break

Attribute a persona to the language model

The following is an example showing how to "attribute a persona to the language model" :

from pyllamacpp.model import Model

prompt_context = """Act as Bob. Bob is helpful, kind, honest,
and never fails to answer the User's requests immediately and with precision. 

User: Nice to meet you Bob!
Bob: Welcome! I'm here to assist you with anything you need. What can I do for you today?
"""

prompt_prefix = "\nUser:"
prompt_suffix = "\nBob:"

model = Model(model_path='/path/to/model.bin',
              n_ctx=512,
              prompt_context=prompt_context,
              prompt_prefix=prompt_prefix,
              prompt_suffix=prompt_suffix)

while True:
  try:
    prompt = input("User: ")
    if prompt == '':
      continue
    print(f"Bob: ", end='')
    for token in model.generate(prompt,
                                antiprompt='User:',
                                n_threads=6,
                                n_batch=1024,
                                n_predict=256,
                                n_keep=48,
                                repeat_penalty=1.0, ):
      print(f"{token}", end='', flush=True)
    print()
  except KeyboardInterrupt:
    break

Example usage with langchain

from pyllamacpp.langchain_llm import PyllamacppLLM

llm = PyllamacppLLM(
    model="path/to/ggml/model",
    temp=0.75,
    n_predict=50,
    top_p=1,
    top_k=40
)

template = "\n\n##Instruction:\n:{question}\n\n##Response:\n"

prompt = PromptTemplate(template=template, input_variables=["question"])

llm_chain = LLMChain(prompt=prompt, llm=llm)

question = "What are large language models?"
answer = llm_chain.run(question)
print(answer)

Supported models

All models supported by llama.cpp should be supported basically:

Supported models:

Advanced usage

For advanced users, you can access the llama.cpp C-API functions directly to make your own logic. All functions from llama.h are exposed with the binding module _pyllamacpp.

API reference

You can check the API reference documentation for more details.

FAQs

Discussions and contributions

If you find any bug, please open an issue.

If you have any feedback, or you want to share how you are using this project, feel free to use the Discussions and open a new topic.

License

This project is licensed under the same license as llama.cpp (MIT License).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyllamacpp-2.4.3.tar.gz (237.4 kB view details)

Uploaded Source

Built Distributions

pyllamacpp-2.4.3-pp310-pypy310_pp73-win_amd64.whl (292.7 kB view details)

Uploaded PyPy Windows x86-64

pyllamacpp-2.4.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (360.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyllamacpp-2.4.3-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (386.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyllamacpp-2.4.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (340.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyllamacpp-2.4.3-pp39-pypy39_pp73-win_amd64.whl (292.5 kB view details)

Uploaded PyPy Windows x86-64

pyllamacpp-2.4.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (360.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyllamacpp-2.4.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (386.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyllamacpp-2.4.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (340.5 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyllamacpp-2.4.3-pp38-pypy38_pp73-win_amd64.whl (292.7 kB view details)

Uploaded PyPy Windows x86-64

pyllamacpp-2.4.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (361.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyllamacpp-2.4.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (386.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyllamacpp-2.4.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (340.6 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pyllamacpp-2.4.3-cp312-cp312-win_amd64.whl (294.3 kB view details)

Uploaded CPython 3.12 Windows x86-64

pyllamacpp-2.4.3-cp312-cp312-win32.whl (249.6 kB view details)

Uploaded CPython 3.12 Windows x86

pyllamacpp-2.4.3-cp312-cp312-musllinux_1_1_x86_64.whl (880.3 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pyllamacpp-2.4.3-cp312-cp312-musllinux_1_1_i686.whl (954.9 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

pyllamacpp-2.4.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (361.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyllamacpp-2.4.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (388.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

pyllamacpp-2.4.3-cp312-cp312-macosx_10_9_x86_64.whl (345.9 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyllamacpp-2.4.3-cp312-cp312-macosx_10_9_universal2.whl (634.9 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

pyllamacpp-2.4.3-cp311-cp311-win_amd64.whl (293.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyllamacpp-2.4.3-cp311-cp311-win32.whl (248.5 kB view details)

Uploaded CPython 3.11 Windows x86

pyllamacpp-2.4.3-cp311-cp311-musllinux_1_1_x86_64.whl (881.3 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pyllamacpp-2.4.3-cp311-cp311-musllinux_1_1_i686.whl (956.4 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pyllamacpp-2.4.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (362.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyllamacpp-2.4.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (388.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

pyllamacpp-2.4.3-cp311-cp311-macosx_10_9_x86_64.whl (340.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyllamacpp-2.4.3-cp311-cp311-macosx_10_9_universal2.whl (627.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

pyllamacpp-2.4.3-cp310-cp310-win_amd64.whl (293.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyllamacpp-2.4.3-cp310-cp310-win32.whl (248.6 kB view details)

Uploaded CPython 3.10 Windows x86

pyllamacpp-2.4.3-cp310-cp310-musllinux_1_1_x86_64.whl (881.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyllamacpp-2.4.3-cp310-cp310-musllinux_1_1_i686.whl (956.4 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pyllamacpp-2.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (362.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyllamacpp-2.4.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (388.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

pyllamacpp-2.4.3-cp310-cp310-macosx_10_9_x86_64.whl (340.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyllamacpp-2.4.3-cp310-cp310-macosx_10_9_universal2.whl (627.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pyllamacpp-2.4.3-cp39-cp39-win_amd64.whl (293.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyllamacpp-2.4.3-cp39-cp39-win32.whl (248.7 kB view details)

Uploaded CPython 3.9 Windows x86

pyllamacpp-2.4.3-cp39-cp39-musllinux_1_1_x86_64.whl (881.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyllamacpp-2.4.3-cp39-cp39-musllinux_1_1_i686.whl (956.2 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pyllamacpp-2.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (362.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyllamacpp-2.4.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (388.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pyllamacpp-2.4.3-cp39-cp39-macosx_10_9_x86_64.whl (340.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyllamacpp-2.4.3-cp39-cp39-macosx_10_9_universal2.whl (627.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pyllamacpp-2.4.3-cp38-cp38-win_amd64.whl (293.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyllamacpp-2.4.3-cp38-cp38-win32.whl (248.7 kB view details)

Uploaded CPython 3.8 Windows x86

pyllamacpp-2.4.3-cp38-cp38-musllinux_1_1_x86_64.whl (881.1 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyllamacpp-2.4.3-cp38-cp38-musllinux_1_1_i686.whl (955.6 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pyllamacpp-2.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (362.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyllamacpp-2.4.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (388.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

pyllamacpp-2.4.3-cp38-cp38-macosx_10_9_x86_64.whl (340.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyllamacpp-2.4.3-cp38-cp38-macosx_10_9_universal2.whl (627.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file pyllamacpp-2.4.3.tar.gz.

File metadata

  • Download URL: pyllamacpp-2.4.3.tar.gz
  • Upload date:
  • Size: 237.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyllamacpp-2.4.3.tar.gz
Algorithm Hash digest
SHA256 d802e1cffe12a98c1192982265ee10bbfcb4ae4290e28f01b5537011cdd07527
MD5 f80c192d26cf7f6e8b7cf320541386c2
BLAKE2b-256 76a98866e5dec76fd96108f125533843927aa243ceb8acf1a280521f96e1f3f2

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 079b8e7d91b38a553fd96a07fa8e82d3531a94a9f51adc48e7e216165c6b1631
MD5 93d09b4be7c327c8e1e02a5e28b45fa0
BLAKE2b-256 d6440a43af935a828821d515372e3dd657ae6f2ef4da1b3df81732f795b43af2

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 960083392f94ecdba1e9ad8922b85dcf7d1f3b7ee5eafe1a82b62765115459b7
MD5 0d66d4437758e5d112eb76d5484bc883
BLAKE2b-256 fbb6b951f2d3ec17a8aff9b008d50a884745c0929cb8f46e4936cf7a31c7c7ae

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7988314fea2c5482ec2e5274ca1a9348a0a3ad951588c711fd66a158d4170fcf
MD5 ffe656527bf94e12a68669f5b08364df
BLAKE2b-256 e7656caf322e8513def8ff119c82711d9499af257acb9a2e5df0ba4ae0cb0cbf

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e171e67ad50be379def15d735e4b9d79a28c2abdc3409b2de40d29ad108d6c09
MD5 ee9597d84220336d2d0667f92fd74c81
BLAKE2b-256 9482ee6f461ec79dd1ed3efb6c360a7e8abaf6e9bb9ecbd415e8c0511a5af384

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6b129cff89c0e254f0328997e0aff295c8441ac75c98d3316e24238f71223be3
MD5 fdbd1add3c6cade06a2805e81d76748b
BLAKE2b-256 a62df87b2b44a58e7cc5538cfdf31ebb9bc98c2dad1fbe34d14b4c4f40325ca3

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b6cfea464d4d5224f5c2860b57595975a3e51f5a05b7635c43422deae4c7a75
MD5 c5ce110488ef2cda37c25bed7cf278a8
BLAKE2b-256 c50886d47b874bb02d18e285f59c970d1facbadbb404946a1ba3d41d19413aea

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ce7e508f07920f062f0b2f3a116bc2acc628388b635f863c4f327a511fe83402
MD5 793a1c86002f43c247d6a2066b967b47
BLAKE2b-256 8ae711e5c465f01456ecb305489024855a263f1c705f02029d3d8504c6ec2eb9

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 47da15a464bb5923dc37eb39cc8e00c9e11597d24847364d144d7f3384f61a59
MD5 6e85b1922dd5d3aae1258b5c13b38fa9
BLAKE2b-256 d031dd70a68b9cd60854f34bf3bcab0159c229b945f4b20155a054f07c109dc8

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 744bdaa22832e037c04410451e7ad7855e82725307d2727d78e5c5d286c39c74
MD5 3a9255da71b36b812c58db999403a62c
BLAKE2b-256 cf5ce9ecaf2a661f5f60af5fff40e9e4b397dd1e9c896c613f36ac4d93e5dafb

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d83806c344ce56c78abed399f7595de24030e80144db48b9bea050e9d24fc98
MD5 906ad7140a76d5fff18c6ac14300d5f6
BLAKE2b-256 c6b242830608ebc312ca6e0bcd061bff888057b8f9e001056d45fa4cec9173c2

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 51345172fd972b6785ff78a3f57667ce2452c9fcb20ab038633b101bd8ce64df
MD5 a55b3da41d3ce67a06f83c51f82e1d8f
BLAKE2b-256 20cf61dfc0428dac3a1780a10ffbc5ae947ba2c582a99d05d6951ca1dd07e5c6

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 37f5a5ddad1e859371d4f2c8d5f1c2c076db3d656323eac55c44060e98cb6424
MD5 03ca20c57c1b5a7316a9cdcc6535e23c
BLAKE2b-256 04ba4e2c6a4fad477fd5b9238d778ee54b12b237152d9a6755b53eab7abd76ff

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 8dbc9ab54b78b2bc11642c8bf472a1e1298d8f839fa9b3ed2d714786e12eeed4
MD5 9d767b67682ca985e19dbcd032fc6c1d
BLAKE2b-256 3c4a3e75dcd86aaf895d9d26741ede1cc912ee9779b9eda421cc2acf30b0547e

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp312-cp312-win32.whl.

File metadata

  • Download URL: pyllamacpp-2.4.3-cp312-cp312-win32.whl
  • Upload date:
  • Size: 249.6 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyllamacpp-2.4.3-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 e9df4171f1ccef676432c681927be904425f0d764aadc15753e78e77e04a5ecf
MD5 2409abb42f6fbb2de919e9e3ac6ed1ab
BLAKE2b-256 33907efa69fd16fa6a61fbd82c4611836a10a2814449fc0056cde7441e6b212b

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 46ef99c10a3fa32044fd29cac8ff38a8e6ba39d02805e90c52f899fee557d6dd
MD5 895e6fbc7f15b47bdea38ac9f471561b
BLAKE2b-256 b7ae5c205b5fc04a254b30bdbc9ad61e54b6ae9161a852e3b240480faf904538

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3c321f14d6f7cb973e0caf27afeb9ac13dab608687886bb16f9f6b31fd2aeb1a
MD5 bd69d05390d6b2646e5eaf781c142dc7
BLAKE2b-256 fb709f1aaf641c145d02b734b4e8a2809c7d3383af3773bec740c27f1fcd1fe6

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0472f3c3530a837338d83d5d27f38da616a9facd481a8e25d1370ffef8ec0add
MD5 9e88879998f55ee96ff593bf27497b2d
BLAKE2b-256 e6a4233f6a1831898ac8b25f2068902b74643bd639eb6f05ed903688083505ff

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 91572ea63a94c9dd3e228556c3e8f097e922027486229f9cdc26a88c7718a706
MD5 dc64e8164b99eb3685d51a0f10816b22
BLAKE2b-256 b7730706494fcae8a62d5cc4a06519f5a023f9db20df272fe8f6cff1382dbf7f

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0d4032cbf59d36366ab9b32cb884d31cf52d16bcdbec5c883c842a0ac725e2ac
MD5 710c109c7d7feefc1f9141e557531480
BLAKE2b-256 03000cc57d39284c49ada0e6719564e7571afa116e669dc7859b8175f0ffc9e4

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 460ef4e41748caa087bbe7391a8406a3f8a7be2bddb4ae69aa943c234c58c6b9
MD5 8e991c8c63a11f555a0cbb9c838d1eeb
BLAKE2b-256 0e3f6e00c1f5d1faa2d6250cc559af6d02442b559b6b7d0b33be82cd3778d642

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9f6f397db537d433b19288f54492013568232818b0d5ea9b8c754c3cdc3c1aa8
MD5 4c94181686cfa9b0c5b1acc922a1be75
BLAKE2b-256 77ea6e6b5e1a95a4c2015cf92d2f560e19e414e1a8a51509335de295c6e7d2fd

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyllamacpp-2.4.3-cp311-cp311-win32.whl
  • Upload date:
  • Size: 248.5 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyllamacpp-2.4.3-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 1ea08a83b35e9d68cc71d12402fbec37446d077ef6bea0912785685b48978c46
MD5 252b6bea65da98dd93e77ea5ba08cbed
BLAKE2b-256 cc87ec212c8d5257a0c7de1a2ad690029104d5ca7d8119702248567271a2233d

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 24518ceb18fe9789fc5f1bb46b8e8b8e031f4a15ff4e8bef222a90c377598480
MD5 9bab227b5abbd8f454df2c4dff33042d
BLAKE2b-256 9ebfc93dc3109e80615af2a645613a491dc2195f6102950ebac0a6be6f8c1078

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 385a434e378dd9d5be66509d825b6ce38554072446c167de7fc619846cba7516
MD5 05d43b6681c5697ce33f7f010569d5a6
BLAKE2b-256 c4cfb134645196e1aaccc1c5f66ab1a5aea199d8877a16496d562e83b1b70c07

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f066f44f0ee426a38e7d2a79a64d4633d9c3e9dc18dd637150f751b07e61a37a
MD5 14e48f866c39a7ae829e1eb818a4f974
BLAKE2b-256 35a87c14a63206078320adf74bb9486b8d39a5e38162f2efdf1ea0845037f4f7

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e46462d470c00b89ec6e05f49638e6702fef6e4df0b10ab2127ca28194d0ba92
MD5 ddf35a32513515a88cde68ed0549e7df
BLAKE2b-256 d8bb678f6dce80dc2b3dd0c6f357c02f9950ee629d9995e7a52d5ac810e28f88

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8da871ed6cbd8b136c3c8904d097cc58be9521291a947badbeb9f25b8db95a80
MD5 baf84a0d5903c81272e81367540c112b
BLAKE2b-256 7ac78452a74a4acf393669b9409deff5919be66c4b8738133b469cc0521d188a

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b23f26479d9c13d846f2f035b2162385ea9dbc6542e9dbe473d6a7360b0f2880
MD5 640f23f344cc66c31d2e8a4dcc70962e
BLAKE2b-256 2f26cc2f7de0095dee75240ab00566c7d48d06a20f1f786461970cf5a19f7535

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b0f76537a03abed4a5043c1fff721e7be46967649842fb4dde7ee1fd60144e0c
MD5 7e8874b1f693f0c04a69b978d7b81176
BLAKE2b-256 1a9f673174533113af4b0e431645585a11a7845ae2e83783ad68306a81c56f9f

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyllamacpp-2.4.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 248.6 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyllamacpp-2.4.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 1381a00535aaa9e03ca773ef44fa0ff4d53c07a383186ee65714c2c0c187beda
MD5 0a66d7c28dc3a1ddfd31787a542a99f3
BLAKE2b-256 adb8b6be337c2e1f571ffff9fd5e69105dc1eb4c50c33c1e0c22e9b7acb33bf3

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 59752fa7830d503c2463c5549f5740d0279f3cff41e6130c2830cc51a1de4b02
MD5 80a5493e55a89e8ae138c52f1b1b9326
BLAKE2b-256 7ec5374482540f073df91eb61f7f64a8343bf31f956fd3a160ccaa12d27d9574

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f4fbb9fc877669c5541979e56eeaea8ec25ae0ae67dd60fe739ec647d170d89d
MD5 9972649a36a54e8f8e8efccb8bc3fdaf
BLAKE2b-256 25b078b8f2e262e8e8cbae2a10486de8288930a85a5539e50ed3cbdbaaf8440a

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 40f25bde38a221d7a43b4c37e0254c4ff78213b1e25160d3bab60c601213bb7c
MD5 5001c4b458fcd7a4ff6cbfafd1838850
BLAKE2b-256 84a17542525026113416b95fcbe29225932b025488542301354fbb039d45a33d

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 828cdef8a3cda5e302da2822ebd308ec0566139cf498c6af9253c153386aefe7
MD5 796165ef20587113e9fa246b38a8a6cd
BLAKE2b-256 0fe376738a25750a76542595c96e9d795eff51920de566053abb0648d7af2c28

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f7026161b8166d8644164a40ff9ead15daf82151d7a3a3158b3f0f3af894b601
MD5 b046368fda946ed62f3140b42ab8a755
BLAKE2b-256 a58c90d03ae80c7c895842298bf45caa9d30df2d64173c2aa1d633a9a252c93e

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1f47efac33819a1cb0d20cf4dfe77102848de3776febf43b9d1f399ad6c6a0ee
MD5 c62800583bd73b6f76e1371187958bea
BLAKE2b-256 36b784e9278ae37fef928e58cc3b165911224f53d6d9566dddfa2a6ee7bfe270

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyllamacpp-2.4.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 293.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyllamacpp-2.4.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bb91d425cc4292a662fd5745f0a184350e0dfd6fafb51a5500c6b007a9c63687
MD5 498f7e9cd1a8fcc7af632e5fcf25662c
BLAKE2b-256 af70a4f36275a3f26e1fb7b1310108a79c4480346029bf0f66fcf5f8fd76bd90

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyllamacpp-2.4.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 248.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyllamacpp-2.4.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ed168d5c9be77f6188f02d4102078eda89320384a7c967dabe4ef7a8419457a2
MD5 3762bdb030447f06aa20965b7974880f
BLAKE2b-256 f746cf5bf16ceeb02883153b56ecf2062d027712d3d291ee05cdfbf72abd1be9

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7f96619d68ebd9f903e6281a6df76be03db3333483c5003c239f36a151613200
MD5 38569c4118e7d0e8812d545937fe062a
BLAKE2b-256 910cc8ad32b474f0fd41cd311f6ac149198c08314b41658708440b37f10568d3

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d5b8d857775c5d839431f1157da867a0fd59707608bbab860a2717aaed196336
MD5 c9d64d2ce820898945305edfbe52b2ed
BLAKE2b-256 060d6b4e4bb1245f1abd3ef76eb0c0e17aefd794184297c41ce4db84b9ae04db

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bb3ffac1819fbb39a485f73142f0c15411eb98e04a2bbd3db1ed4604e3a477ba
MD5 548e39b2743044a25e36d8512658778a
BLAKE2b-256 80f490c4c60776e8e32decb28e4c3f3ec4a92cbdccbe2c992792ab83c75a6074

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d67d93cf685d30846b769f50ed53228469f00958798b9ea454d4a34436d38ce4
MD5 2b824ef6d4d7f7ead0cdb4c26a660530
BLAKE2b-256 e24f15a0ffcc2ad191b3345b19e4be54710aa058762a68af428ad95542ad8070

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8d73b70d1d9b5fdd04eb720a522a98d837cf185d0c422f95288fec6df5615f97
MD5 fc93f04888b5609cd657b0f2a5ef7cce
BLAKE2b-256 2696f8f76c5982221e7b2c548d197ab1d728dacd371a0448db3cdfe7d5aceff6

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e1ec6ddf601f6927baeab566d68efd495e6ffe3de55fe895210bcc60eed14626
MD5 736333f36848fe244ed4a3875b3df2b7
BLAKE2b-256 55269ad69bc312da81e4125d919a0a1951564b78914a0486624151c19373a3a5

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyllamacpp-2.4.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 293.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyllamacpp-2.4.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fb0a6b38761ef928ba79c29ce4a7cbcb024bfa7c34a468867ec93e543e27a18a
MD5 34179840d68c320773920d67e2e7b4ff
BLAKE2b-256 3ced6758716589b62dfb5949d067a4803116b781f45cd6a35d325042bf3f139b

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyllamacpp-2.4.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 248.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyllamacpp-2.4.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a822c50b7516fc24e944501818ae1f527faf700d3906828811f07b5ee2cf3739
MD5 a23c0e34b57f5a5d2c7128fba92b42d4
BLAKE2b-256 579f51b611269d0b21859ddabab97fc1f66c3e342d9418ef335f55d87cd86dee

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 012554d261a24a8614c88cb506d1922566247223b0e885854bf6dd3051d048cd
MD5 02bf632eeb1360826f123599354353ba
BLAKE2b-256 905d7ddd1aab8711baf066bd7b7dff811ba86ca5862bd051aec0260fc82f0284

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 da42a54512d987bfbd5a8b4a90789264b4c0eea8c987e729ebc9f9a3f9ae0b91
MD5 02ab9e679c1e7745e8860627d988f1a4
BLAKE2b-256 614c9664e2e686d6d8c1445b89e6902d7da1c6ed8f33958140cb6e2df31453b8

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d3b9d1e6f7cd8345ffb6236290e297cabcd7b9d80367a299425a51d25097413
MD5 4028f116e160dd0988265902d2f6c439
BLAKE2b-256 61294146eaceecc0c059d67bab1c8009feb1f3bda552f87cc01be8a59f167c3f

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 381845ed6fd5e0203b77c02645f43c3a5972e05584e80fb2c3a7efa5b2ec503d
MD5 4c8570a7e6be5b7884bf26ff3ee7715d
BLAKE2b-256 8f3fd6ff1fd4a08a829508cb0cf49dac1398a9d1b3b81fa8cbd1276151717985

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0a4ded37e37b29d22e75157469d5b537cb43c19eaabf8da8191bf431f585eab6
MD5 1ddb4ab176a4a2ec12862469d7e812b8
BLAKE2b-256 9dd4c57e5a1a7a138422735eab42e34600b2b007386715ae56bca07f19c79697

See more details on using hashes here.

File details

Details for the file pyllamacpp-2.4.3-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyllamacpp-2.4.3-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 56d80971290ab66bb3ec63add6ea2eeecfc11df334c714290756932865743768
MD5 4c729dcfa425fcc83231473dcc6d9cbb
BLAKE2b-256 810b70dc5aec3eb1afdc75e629de54199dbd31ecf7b8385b43ee058c049b3996

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page