Skip to main content

Analysis of allele-specific methylation in bisulfite DNA sequencing.

Project description

pyllelic

Language grade: Python CodeFactor Codacy Badge Codacy Badge Code style: black PyPI Anaconda-Server Badge GitHub

⭐   the project to show your appreciation. :arrow_upper_right:

pyllelic: a tool for detection of allelic-specific methylation variation in bisulfite DNA sequencing files.

Pyllelic documention is available at https://paradoxdruid.github.io/pyllelic/ and see pyllelic_notebook.ipynb for an interactive demonstration.

Dependencies and Installation

Using Conda (preferred)

Create a new conda environment using python 3.8:

conda create --name PYLLELIC python=3.8
conda activate PYLLELIC
conda config --env --add channels conda-forge
conda config --env --add channels bioconda
conda config --env --add channels paradoxdruid
conda install pyllelic 

# Optional but usual use case:
conda install notebook jupyter_contrib_nbextensions ipywidgets

PyPi installation

This will require independent installation of samtools, bowtie2, and bismark packages.

# PyPi
python3 -m pip install pyllelic
# or Github
python3 -m pip install git+https://github.com/Paradoxdruid/pyllelic.git

Example exploratory use in jupyter notebook

    from pyllelic import pyllelic

    config = pyllelic.configure(  # Specify file and directory locations
        base_path="/Users/abonham/documents/test_allelic/",
        prom_file="TERT-promoter-genomic-sequence.txt",
        prom_start="1293200",
        prom_end="1296000",
        chrom="5",
        offset=1298163,
    )

    files_set = pyllelic.make_list_of_bam_files(config)  # finds bam files

    # Run pyllelic; make take some time depending on number of bam files
    data = pyllelic.GenomicPositionData(config=config, files_set=files_set)

    positions = data.positions

    cell_types = data.cell_types

    means_df = data.means

    modes_df = data.modes
    
    diff_df = data.diffs

    individual_data = data.individual_data

    data.save("output.xlsx")  # save methylation results

    data.save_pickle("my_run.pickle")  # save data object for later analysis
    
    data.write_means_modes_diffs(filename="Run1_")  # write output data files

    data.histogram("CELL_LINE", "POSITION")  # visualize data for a point

    data.heatmap(min_values=1)  # methylation level heatmap

    data.quma_results["CELL_LINE"]  # see summary data for a cell line

Authors

This software is developed as academic software by Dr. Andrew J. Bonham at the Metropolitan State University of Denver. It is licensed under the GPL v3.0.

This software incorporates implementation from QUMA, licensed under the GPL v3.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyllelic-0.2.6.tar.gz (41.9 kB view details)

Uploaded Source

Built Distribution

pyllelic-0.2.6-py3-none-any.whl (31.3 kB view details)

Uploaded Python 3

File details

Details for the file pyllelic-0.2.6.tar.gz.

File metadata

  • Download URL: pyllelic-0.2.6.tar.gz
  • Upload date:
  • Size: 41.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.8.2 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.6

File hashes

Hashes for pyllelic-0.2.6.tar.gz
Algorithm Hash digest
SHA256 36d7a5c22a6df0f1ed8d3af9734aca8b5c6515219be997449870e0f3114173a7
MD5 7e3fc50cd3083b5d32f369b050ef1a16
BLAKE2b-256 1cad7fdcd5892e2499eea6e1401842f979d0c0431c2c1b7cedfcfc99251aea1d

See more details on using hashes here.

File details

Details for the file pyllelic-0.2.6-py3-none-any.whl.

File metadata

  • Download URL: pyllelic-0.2.6-py3-none-any.whl
  • Upload date:
  • Size: 31.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.8.2 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.6

File hashes

Hashes for pyllelic-0.2.6-py3-none-any.whl
Algorithm Hash digest
SHA256 eef01753db27a5001d45bb94152399575669eedf61c2a85ba80602eabb6e786a
MD5 197c0822132f8aa740d68d88bd244f41
BLAKE2b-256 55a8872f6c6ab206895ea0bac4d2505b3709a7c6cc2695db24a0525cddafca54

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page