LLM Powered Advanced RAG Application
Project description
pyLLMSearch - Advanced RAG
The purpose of this package is to offer a convenient question-answering (RAG) system with a simple YAML-based configuration that enables interaction with multiple collections of local documents. Special attention is given to improvements in various components of the system in addition to basic LLM-based RAGs - better document parsing, hybrid search, HyDE enabled search, chat history, deep linking, re-ranking, the ability to customize embeddings, and more. The package is designed to work with custom Large Language Models (LLMs) – whether from OpenAI or installed locally.
Features
-
Supported formats
- Build-in parsers:
.md
- Divides files based on logical components such as headings, subheadings, and code blocks. Supports additional features like cleaning image links, adding custom metadata, and more..pdf
- MuPDF-based parser..docx
- custom parser, supports nested tables.
- Other common formats are supported by
Unstructured
pre-processor:- List of formats see here.
- Build-in parsers:
-
Support for table parsing via open-source gmft (https://github.com/conjuncts/gmft) or Azure Document Intelligence.
-
Optional support for image parsing using Gemini API.
-
Supports multiple collection of documents, and filtering the results by a collection.
-
An ability to update the embeddings incrementally, without a need to re-index the entire document base.
-
Generates dense embeddings from a folder of documents and stores them in a vector database (ChromaDB).
- The following embedding models are supported:
- Hugging Face embeddings.
- Sentence-transformers-based models, e.g.,
multilingual-e5-base
. - Instructor-based models, e.g.,
instructor-large
.
- The following embedding models are supported:
-
Generates sparse embeddings using SPLADE (https://github.com/naver/splade) to enable hybrid search (sparse + dense).
-
Supports the "Retrieve and Re-rank" strategy for semantic search, see here.
- Besides the originally
ms-marco-MiniLM
cross-encoder, more modernbge-reranker
is supported.
- Besides the originally
-
Supports HyDE (Hypothetical Document Embeddings) - see here.
- WARNING: Enabling HyDE (via config OR webapp) can significantly alter the quality of the results. Please make sure to read the paper before enabling.
- From my own experiments, enabling HyDE significantly boosts quality of the output on a topics where user can't formulate the quesiton using domain specific language of the topic - e.g. when learning new topics.
-
Support for multi-querying, inspired by
RAG Fusion
- https://towardsdatascience.com/forget-rag-the-future-is-rag-fusion-1147298d8ad1- When multi-querying is turned on (either config or webapp), the original query will be replaced by 3 variants of the same query, allowing to bridge the gap in the terminology and "offer different angles or perspectives" according to the article.
-
Supprts optional chat history with question contextualization
-
Allows interaction with embedded documents, internally supporting the following models and methods (including locally hosted):
- OpenAI models (ChatGPT 3.5/4 and Azure OpenAI).
- HuggingFace models.
- Llama cpp supported models - for full list see here.
- AutoGPTQ models (temporarily disabled due to broken dependencies).
-
Interoperability with LiteLLM + Ollama via OpenAI API, supporting hundreds of different models (see Model configuration for LiteLLM)
-
Other features
- Simple CLI and web interfaces.
- Deep linking into document sections - jump to an individual PDF page or a header in a markdown file.
- Ability to save responses to an offline database for future analysis.
- Experimental API
Demo
Documentation
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pyllmsearch-0.8.2.tar.gz
.
File metadata
- Download URL: pyllmsearch-0.8.2.tar.gz
- Upload date:
- Size: 3.6 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 53b6c369ecb7cb83219792c43cc93f7921fdb593dbfec60cfc68751f85e0b62f |
|
MD5 | b19a93730d6c0151d716aadba15b0fbd |
|
BLAKE2b-256 | 987f50237369f45d7312556eb719ec3ab139a85dd93475c6d1566da182b59357 |
File details
Details for the file pyllmsearch-0.8.2-py3-none-any.whl
.
File metadata
- Download URL: pyllmsearch-0.8.2-py3-none-any.whl
- Upload date:
- Size: 74.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e9a2d2ff93848bee3592c143c239e63da5663a1dbfe4fe42e2db33b28e8ad4d4 |
|
MD5 | b78b3a524be80bfacfb04968d53007f4 |
|
BLAKE2b-256 | d8c3e4e10e414f2112391c614647a034fae3d22c7fb1eab446759d4589ede43a |