This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description
================================================================================
Python wrapper for MADlib
Srivatsan Ramanujam <vatsan.cs@utexas.edu>, 3 Jan 2013
This currently implements Linear regression, Logistic Regression,
SVM (regression & classification), K-Means and LDA algorithms of MADlib.
Refer : http://doc.madlib.net/v0.5/ for MADlib's user documentation.
================================================================================

Dependencies :
===============
You'll need the python extension : psycopg2 to use PyMADlib.
(i) If you have matplotlib installed, you'll see Matplotlib visualizations for Linear Regression demo.
(ii) If you have installed networkx (http://networkx.github.com/download.html) you'll see a visualization of the k-means demo
(iii) PyROC (https://github.com/marcelcaraciolo/PyROC) is included in the source of this distribution with permission from its developer. You'll see a visualization of the ROC curves for Logistic Regression.

Configurations:
===============
To configure your DB Connection parameters
You should create a file in your home directory : ~/.pymadlib.config
that should look like so :

------------------------------------------------------------
[db_connection]
user = gpadmin
password = XXXXX
hostname = 127.0.0.1 (or the IP of your DB server)
port = 5432 (the port# of your DB)
database = vatsandb (the database you wish to connect to)
------------------------------------------------------------

INSTALLATION INSTRUCTIONS:
===========================
1) You may install pymadlib by downloading the source (from PyPI) and then run the following :

sudo python setup.py build
sudo python setup.py install
(OR)
2) If you use easy_install or pip, simply run :
sudo easy_install pymadlib


Running the Demos :
===================
You may run the demo from the extracted directory of pymadlib like so :

python example.py

(OR)

If you installed PyMADlib using instructions in the previous section, then simply run

python -c 'from pymadlib.example import runDemos; runDemos()'


Datasets packaged with this installation :
=========================================
PyMADlib packages publicly available datasets from the UCI machine learning repository and other sources.

1) Wine quality dataset from UCI Machine Learning repository : http://archive.ics.uci.edu/ml/datasets/Wine+Quality
2) Auto MPG dataset from UCI ML repository : http://archive.ics.uci.edu/ml/datasets/Auto+MPG
3) Obama-Romney second presidential debate (2012) transcripts for the LDA models.


Installation Issues:
=====================

Installing pymadlib using distutils should automatically install the dependent library psycopg2, which is required to
connect to a PostGres database (where MADlib is installed on). If you are using Mac OSX 10.6.X you may run into issues
with installing psycopg2.

Here are some blogs which discuss the issue and offer solutions:

http://hardlifeofapo.com/psycopg2-and-postgresql-9-1-on-snow-leopard/
http://www.initd.org/psycopg/articles/2010/11/11/links-about-building-psycopg-mac-os-x/
Release History

Release History

0.1.7

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.6

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.5

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.4

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.3

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.2

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
pymadlib-0.1.7.tar.gz (54.9 kB) Copy SHA256 Checksum SHA256 Source May 19, 2014

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting