Skip to main content

MARS: a tensor-based unified framework for large-scale data computation.

Project description

https://raw.githubusercontent.com/mars-project/mars/master/docs/source/images/mars-logo-title.png

PyPI version Docs Build Coverage Quality License

Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and many other libraries.

Documentation, 中文文档

Installation

Mars is easy to install by

pip install pymars

Installation for Developers

When you want to contribute code to Mars, you can follow the instructions below to install Mars for development:

git clone https://github.com/mars-project/mars.git
cd mars
pip install -e ".[dev]"

More details about installing Mars can be found at installation section in Mars document.

Architecture Overview

https://raw.githubusercontent.com/mars-project/mars/master/docs/source/images/architecture.png

Getting Started

Starting a new runtime locally via:

>>> import mars
>>> mars.new_session()

Or connecting to a Mars cluster which is already initialized.

>>> import mars
>>> mars.new_session('http://<web_ip>:<ui_port>')

Mars Tensor

Mars tensor provides a familiar interface like Numpy.

Numpy

Mars tensor

import numpy as np
N = 200_000_000
a = np.random.uniform(-1, 1, size=(N, 2))
print((np.linalg.norm(a, axis=1) < 1)
      .sum() * 4 / N)
import mars.tensor as mt
N = 200_000_000
a = mt.random.uniform(-1, 1, size=(N, 2))
print(((mt.linalg.norm(a, axis=1) < 1)
        .sum() * 4 / N).execute())
3.14174502
CPU times: user 11.6 s, sys: 8.22 s,
           total: 19.9 s
Wall time: 22.5 s
3.14161908
CPU times: user 966 ms, sys: 544 ms,
           total: 1.51 s
Wall time: 3.77 s

Mars can leverage multiple cores, even on a laptop, and could be even faster for a distributed setting.

Mars DataFrame

Mars DataFrame provides a familiar interface like pandas.

Pandas

Mars DataFrame

import numpy as np
import pandas as pd
df = pd.DataFrame(
    np.random.rand(100000000, 4),
    columns=list('abcd'))
print(df.sum())
import mars.tensor as mt
import mars.dataframe as md
df = md.DataFrame(
    mt.random.rand(100000000, 4),
    columns=list('abcd'))
print(df.sum().execute())
CPU times: user 10.9 s, sys: 2.69 s,
           total: 13.6 s
Wall time: 11 s
CPU times: user 1.21 s, sys: 212 ms,
           total: 1.42 s
Wall time: 2.75 s

Mars Learn

Mars learn provides a familiar interface like scikit-learn.

Scikit-learn

Mars learn

from sklearn.datasets import make_blobs
from sklearn.decomposition import PCA
X, y = make_blobs(
    n_samples=100000000, n_features=3,
    centers=[[3, 3, 3], [0, 0, 0],
             [1, 1, 1], [2, 2, 2]],
    cluster_std=[0.2, 0.1, 0.2, 0.2],
    random_state=9)
pca = PCA(n_components=3)
pca.fit(X)
print(pca.explained_variance_ratio_)
print(pca.explained_variance_)
from mars.learn.datasets import make_blobs
from mars.learn.decomposition import PCA
X, y = make_blobs(
    n_samples=100000000, n_features=3,
    centers=[[3, 3, 3], [0, 0, 0],
              [1, 1, 1], [2, 2, 2]],
    cluster_std=[0.2, 0.1, 0.2, 0.2],
    random_state=9)
pca = PCA(n_components=3)
pca.fit(X)
print(pca.explained_variance_ratio_)
print(pca.explained_variance_)

Mars learn also integrates with many libraries:

Mars remote

Mars remote allows users to execute functions in parallel.

Vanilla function calls

Mars remote

import numpy as np


def calc_chunk(n, i):
    rs = np.random.RandomState(i)
    a = rs.uniform(-1, 1, size=(n, 2))
    d = np.linalg.norm(a, axis=1)
    return (d < 1).sum()

def calc_pi(fs, N):
    return sum(fs) * 4 / N

N = 200_000_000
n = 10_000_000

fs = [calc_chunk(n, i)
      for i in range(N // n)]
pi = calc_pi(fs, N)
print(pi)
import numpy as np
import mars.remote as mr

def calc_chunk(n, i):
    rs = np.random.RandomState(i)
    a = rs.uniform(-1, 1, size=(n, 2))
    d = np.linalg.norm(a, axis=1)
    return (d < 1).sum()

def calc_pi(fs, N):
    return sum(fs) * 4 / N

N = 200_000_000
n = 10_000_000

fs = [mr.spawn(calc_chunk, args=(n, i))
      for i in range(N // n)]
pi = mr.spawn(calc_pi, args=(fs, N))
print(pi.execute().fetch())
3.1416312
CPU times: user 32.2 s, sys: 4.86 s,
           total: 37.1 s
Wall time: 12.4 s
3.1416312
CPU times: user 616 ms, sys: 307 ms,
           total: 923 ms
Wall time: 3.99 s

DASK on Mars

Refer to DASK on Mars for more information.

Eager Mode

Mars supports eager mode which makes it friendly for developing and easy to debug.

Users can enable the eager mode by options, set options at the beginning of the program or console session.

>>> from mars.config import options
>>> options.eager_mode = True

Or use a context.

>>> from mars.config import option_context
>>> with option_context() as options:
>>>     options.eager_mode = True
>>>     # the eager mode is on only for the with statement
>>>     ...

If eager mode is on, tensor, DataFrame etc will be executed immediately by default session once it is created.

>>> import mars.tensor as mt
>>> import mars.dataframe as md
>>> from mars.config import options
>>> options.eager_mode = True
>>> t = mt.arange(6).reshape((2, 3))
>>> t
array([[0, 1, 2],
       [3, 4, 5]])
>>> df = md.DataFrame(t)
>>> df.sum()
0    3
1    5
2    7
dtype: int64

Mars on Ray

Mars also has deep integration with Ray and can run on Ray efficiently and interact with the large ecosystem of machine learning and distributed systems built on top of the core Ray.

Starting a new Mars on Ray runtime locally via:

import mars
mars.new_session(backend='ray')
# Perform compute

Interact with Ray Dataset:

import mars.tensor as mt
import mars.dataframe as md
df = md.DataFrame(
    mt.random.rand(1000_0000, 4),
    columns=list('abcd'))
# Convert mars dataframe to ray dataset
ds = md.to_ray_dataset(df)
print(ds.schema(), ds.count())
ds.filter(lambda row: row["a"] > 0.5).show(5)
# Convert ray dataset to mars dataframe
df2 = md.read_ray_dataset(ds)
print(df2.head(5).execute())

Refer to Mars on Ray for more information.

Easy to scale in and scale out

Mars can scale in to a single machine, and scale out to a cluster with thousands of machines. It’s fairly simple to migrate from a single machine to a cluster to process more data or gain a better performance.

Bare Metal Deployment

Mars is easy to scale out to a cluster by starting different components of mars distributed runtime on different machines in the cluster.

A node can be selected as supervisor which integrated a web service, leaving other nodes as workers. The supervisor can be started with the following command:

mars-supervisor -h <host_name> -p <supervisor_port> -w <web_port>

Workers can be started with the following command:

mars-worker -h <host_name> -p <worker_port> -s <supervisor_endpoint>

After all mars processes are started, users can run

>>> sess = new_session('http://<web_ip>:<ui_port>')
>>> # perform computation

Kubernetes Deployment

Refer to Run on Kubernetes for more information.

Yarn Deployment

Refer to Run on Yarn for more information.

Getting involved

Thank you in advance for your contributions!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymars-0.10.0.tar.gz (1.8 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pymars-0.10.0-cp310-cp310-win_amd64.whl (3.7 MB view details)

Uploaded CPython 3.10Windows x86-64

pymars-0.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

pymars-0.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.6 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

pymars-0.10.0-cp310-cp310-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

pymars-0.10.0-cp310-cp310-macosx_10_9_universal2.whl (5.0 MB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

pymars-0.10.0-cp39-cp39-win_amd64.whl (3.7 MB view details)

Uploaded CPython 3.9Windows x86-64

pymars-0.10.0-cp39-cp39-win32.whl (3.5 MB view details)

Uploaded CPython 3.9Windows x86

pymars-0.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

pymars-0.10.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (7.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.5+ x86-64

pymars-0.10.0-cp39-cp39-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

pymars-0.10.0-cp39-cp39-macosx_10_9_universal2.whl (5.0 MB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

pymars-0.10.0-cp38-cp38-win_amd64.whl (3.7 MB view details)

Uploaded CPython 3.8Windows x86-64

pymars-0.10.0-cp38-cp38-win32.whl (3.5 MB view details)

Uploaded CPython 3.8Windows x86

pymars-0.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

pymars-0.10.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.5+ x86-64

pymars-0.10.0-cp38-cp38-macosx_10_9_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

pymars-0.10.0-cp38-cp38-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)

pymars-0.10.0-cp37-cp37m-win_amd64.whl (3.7 MB view details)

Uploaded CPython 3.7mWindows x86-64

pymars-0.10.0-cp37-cp37m-win32.whl (3.2 MB view details)

Uploaded CPython 3.7mWindows x86

pymars-0.10.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (9.0 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

pymars-0.10.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.5+ x86-64

pymars-0.10.0-cp37-cp37m-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file pymars-0.10.0.tar.gz.

File metadata

  • Download URL: pymars-0.10.0.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pymars-0.10.0.tar.gz
Algorithm Hash digest
SHA256 8d77de3b49dd170d8a9bb2c5ca6ac5812a73673eed7559efdbb2259fd3958022
MD5 c543079d2662a877f13feea373178dff
BLAKE2b-256 574cfaa88cb69b48bf5859a7660cafdf14f8d2875cc6084c1d7d30068790d4a2

See more details on using hashes here.

File details

Details for the file pymars-0.10.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pymars-0.10.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for pymars-0.10.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f0d68b2b3ffa9402c8411c18144b3067cfe0dd190a885f519816b712a8085c9e
MD5 0d4fc2e71152b4b4e803634762c6b504
BLAKE2b-256 8aad6a8668a2616b33844feb41b148c8e04dfb0061b258d56b60535b90f1061e

See more details on using hashes here.

File details

Details for the file pymars-0.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymars-0.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 73ddd897ff68de732d42b630ead0329229754bcf396b931b3e9c3f76678062c0
MD5 922163b8abfb9130d84f213937c342f9
BLAKE2b-256 54d85077b699b594f75ac7c0499dbf370c9347dba6714da106d6111750921d9a

See more details on using hashes here.

File details

Details for the file pymars-0.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pymars-0.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3fa21b672653fe187e137e5b257103772daedc0467d1c17be5e30bf1f550be27
MD5 c0f5e73f95757e07dfeae1069215e2d4
BLAKE2b-256 b2931d01d0c6eccd4b48abc6ab8d05c019097219ffc791a1b2f46a0589e0e4b6

See more details on using hashes here.

File details

Details for the file pymars-0.10.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pymars-0.10.0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for pymars-0.10.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4a7e96c8df22213614455e655cea47d1223f1967a6acb5eb2f53e54b1929e2eb
MD5 c5a73ef8da67ddb2281bc7b2dccbc1e0
BLAKE2b-256 fd1135c86d7925ac97aa0e0ba94d05a3b43e32527f6e823be54a9dc65e930530

See more details on using hashes here.

File details

Details for the file pymars-0.10.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pymars-0.10.0-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for pymars-0.10.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 017f8fffbc33a1323d20e1c975a479789bfe08970e532d7d2ab49f83d90c1542
MD5 72876cb4557671a5ed9e1586dce5e462
BLAKE2b-256 de9a75ae487ac3a4b9188d71df9fc7abc27ebc4a0c596b2c354fe21008506a15

See more details on using hashes here.

File details

Details for the file pymars-0.10.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pymars-0.10.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for pymars-0.10.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7a97524f19b6f864f76818a1d2930fd86b56d949a2be736206d9ad94563063f7
MD5 784ed11a6d6b12f97688f3e0f1f2585e
BLAKE2b-256 7eece3f5a4006b0d8b4b7c2a0998e7d62e4286e7269fc0db78e23a78b4d97361

See more details on using hashes here.

File details

Details for the file pymars-0.10.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: pymars-0.10.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for pymars-0.10.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 61068c9297d6ecca717b4eda29a22ac2f98b2c1d010b5f8e3f0e45a0dd41e8af
MD5 c16bbb6af44613daaeec1c40bf217716
BLAKE2b-256 50941392b9082bc880938a3121e956033a91dfe9643d3db001b3f0763ceab544

See more details on using hashes here.

File details

Details for the file pymars-0.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pymars-0.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4f95439dd3efbdab6861c7ccc384f2707258fb96eb65c22514613c4ae536732f
MD5 6edaf2b6802419ddb1131bc81a450642
BLAKE2b-256 2b9876a51535e5a5b591f7e6d1bfbbcf7103d319c1654b5c416fef32d5dfaac4

See more details on using hashes here.

File details

Details for the file pymars-0.10.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pymars-0.10.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8f87a682de82eb0f073e865aadf685238d857c0413e276c3689fca081847ff30
MD5 16b780cfbdfe57e5dbecb6590d4a222a
BLAKE2b-256 c455d0e364288ca113ca65bd99ed50298543dd5e238bcb97b843857eb1325edc

See more details on using hashes here.

File details

Details for the file pymars-0.10.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pymars-0.10.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for pymars-0.10.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c786871aa5e827e436186b80f616a75e4e98b058b2fe50be224ba4e5506d94c8
MD5 6f01270da0f2beebf82bbb42de74131a
BLAKE2b-256 11a9f4ac6f764cffacffabd9b53a53666b7d991ceae9beb081a5f02ce3fbe0ec

See more details on using hashes here.

File details

Details for the file pymars-0.10.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pymars-0.10.0-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for pymars-0.10.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1c871284f36217566ebdb7fa47bc64deafb5a2fbcfdb98a868b06922ca214024
MD5 944ca94514cc4fb98656ce14173ed64d
BLAKE2b-256 8a1c4e01c0481a0de4f81c665c5eebada52748dbd597fdf431e54ec548c6bddf

See more details on using hashes here.

File details

Details for the file pymars-0.10.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pymars-0.10.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for pymars-0.10.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6f9d7f1ae43e95f04018dcbf5901877105325715c40125715b00379f6b7aac55
MD5 edda091f675baebe3b9ca8f3849549cc
BLAKE2b-256 31a082fc77ea1b613910301f2f45a019d8868dc2251fa6730d67ead5132e4946

See more details on using hashes here.

File details

Details for the file pymars-0.10.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: pymars-0.10.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for pymars-0.10.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d7bba5df19403eac9cb6570ddda4527bd9a19086dbcd811708b3cd876ab37421
MD5 070c08cc0e37dd00a7e887fc42240617
BLAKE2b-256 3725ab82e12e7e726868eb43556ef351fb6da77d19e8707f0496c73dbdfff2c5

See more details on using hashes here.

File details

Details for the file pymars-0.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pymars-0.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 00457464432670a76e0691242f58ee6d7287bcb9051556565d222534a41860e1
MD5 55750f0d7dca3cfe6a1ba4e46c04e663
BLAKE2b-256 dd52052cf2fda21eac83c8706786d934b7b25166506ba6f4880fa0db89e8f281

See more details on using hashes here.

File details

Details for the file pymars-0.10.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pymars-0.10.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 13fb46ae5c9a4321a8031fcf9488178cf64835e7f53ce7529caa1abba5ef9395
MD5 1204341b2dad4e11d13f4c1911d298be
BLAKE2b-256 68e7a67babc1903de1097d53bd90509da5a592ded714b9e76193503e2855f551

See more details on using hashes here.

File details

Details for the file pymars-0.10.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pymars-0.10.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for pymars-0.10.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c1493f7042247fbf2b08f87d56e8d665f7048f104380018ee7e9f6885295fec0
MD5 349b343a76d1f598e0bb4ff1763335a8
BLAKE2b-256 5b52ee1e3dceb66f50940b6b11379da7ab25a09bd7f75cba6fab8af18da2ce30

See more details on using hashes here.

File details

Details for the file pymars-0.10.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pymars-0.10.0-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for pymars-0.10.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 76eab5d8009b53fec9178b6c7cb59ffad33900ef89e6eaf3efac8187a0b651a5
MD5 4da3d8e5f81c5342cb8b68a6eeed59ed
BLAKE2b-256 a8dc61e73b963b50ac27fa403df6bea3ff738a7cfc673ea292f4c39f4dddaefe

See more details on using hashes here.

File details

Details for the file pymars-0.10.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pymars-0.10.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for pymars-0.10.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5254d314a46e30028a2dbf4a1de789a60b94678d5d99e8f9f9fade99ec74e700
MD5 7c30bc51a9f655849d0f65f092493aa6
BLAKE2b-256 91365a117d3bf7d167e98de7f3a8ae072b3aef9f6975ce5da1ebcd9311e6116c

See more details on using hashes here.

File details

Details for the file pymars-0.10.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pymars-0.10.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for pymars-0.10.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 94eca2a9cabd8a3c00253bf0ad06815b466ac7230bcac88b985dc1242d3163af
MD5 efb52d598ae4813c8a7dfaa931e12a33
BLAKE2b-256 035caf336940066030461a865416390a63289b7faf635404e4b3ef368684f3f0

See more details on using hashes here.

File details

Details for the file pymars-0.10.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pymars-0.10.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9e2714d19f58160165e0d6b767e07f3195e375d3543037587712f34a4cc64b17
MD5 a7fca46290fe15077d4e8c9b6b7c06b4
BLAKE2b-256 579dc0762e783b98ac499525891cdf753495e8e5f21458008e849dd168764890

See more details on using hashes here.

File details

Details for the file pymars-0.10.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pymars-0.10.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7f338fe04998b352a4550bd419ed4c26888b6f31e08fe493fd72db1d8fa6eda6
MD5 b9100501a75380b2af295222e01279f7
BLAKE2b-256 ca637061aa870183e5c6638f080ad60cb70af6d917f7b0b4014a709564e0a858

See more details on using hashes here.

File details

Details for the file pymars-0.10.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pymars-0.10.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for pymars-0.10.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0ca3b970a70e9b10ece343eed1d1950e40d666e1be9c594096be2456b8cf32c5
MD5 573aba7959a0318d6e66d7fd373286d2
BLAKE2b-256 82a8d1a4d9435581e321ecb8a15540320ee849975b6b47ffe130717060120a93

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page