This is a module which can be used for performing matrix operations

# matrix

This is a module to replicate matrix object to python and all its mathematical operators

## Installation

pip install pymatdet

## Documentation

Available methods

• .rows()
• .cols()
• .principal_diagonal()
• .minor(row,col)
• .cofactor(row,col)
• trace()
• .determinant()
• .transpose()
• .adjoint()
• .inverse([precision])
• .isutriangle()
• .isltriangle()
• nullity()
• sqareness()

Available operators

• +
• -
• *
• ==
• negation
• bool

NOTE: Index of row and col start from 1

## creating a matrix object

x=matrix(row,col,val)

allows null,random, ltriangle,utriangle and identity instead of val in object creation.

• null: creates a null matrix example: x=matrix(3,3,"null")

• random: creates a random matrix  example: x=matrix(3,3,"random")

• ltriangle: creates a lower triangular matrix  example: x=matrix(3,3,"ltriangle")

• utriangle: creates a upper triangular matrix  example: x=matrix(3,3,"utriangle")

• identity: creates an identity matrix  example: x=matrix(3,3,"identity")

NOTE: if you want to create a matrix with specific values, you can use the following syntax: x=matrix(row,col,val) where val is a list of lists with the values of the matrix.and appropriate dimensions.

## Accessing elements

Allows value assignment using matrix[row,col]=val returns value at current index using val=matrix[row,col]

## .rows()

returns number of rows in the matrix

## .cols()

returns number of columns in the matrix

## .principal_diagonal()

returns principal diagonal of the matrix

## .minor(row,col)

returns the minor of element at given row,col

## .cofactor(row,col)

returns the cofactor of element at given row,col

## .trace()

returns trace of the matrix

## .determinant()

returns determinant of the matrix

## .transpose()

returns transpose of the given matrix

returns adjoint of the given matrix

## .inverse([precision])

returns inverse of the given matrix.allows precision of calculation. NOTE: precision is optional.if not given,default precision is 10

## .isutriangle()

returns true if the matrix is upper triangular otherwise returns false

## .isltriangle()

returns true if the matrix is lower triangular otherwise returns false

## .nullity()

returns true if the matrix is null otherwise returns false

## .squareness()

returns true if the matrix is square otherwise returns false

## using operators

• x+y returns addition of 2 matrix x and y

• x-y returns subtraction of 2 matrix x and y

• x*y returns multiplication of 2 matrix x and y

• x/y raises exception operator not available

• x==y returns true if x and y are equal

• -x returns negative of matrix x

• bool(x) returns true if x is not null

## Release history Release notifications | RSS feed

This version 1.0.4 1.0.3 1.0.2 1.0.1 1.0.0

Uploaded source
Uploaded py3