Skip to main content

A toolkit for visualizations in materials informatics

Project description

Logo
pymatviz

A toolkit for visualizations in materials informatics.

Tests This project supports Python 3.10+ PyPI PyPI Downloads Zenodo

If you use pymatviz in your research, see how to cite.

Installation

pip install pymatviz

API Docs

See the /api page.

Usage

See the Jupyter notebooks under examples/ for how to use pymatviz. PRs with additional examples are welcome! 🙏

mlff_phonons.ipynb Open in Google Colab Launch Codespace
matbench_dielectric_eda.ipynb Open in Google Colab Launch Codespace
mp_bimodal_e_form.ipynb Open in Google Colab Launch Codespace
matbench_perovskites_eda.ipynb Open in Google Colab Launch Codespace
mprester_ptable.ipynb Open in Google Colab Launch Codespace

Periodic Table

See pymatviz/ptable/ptable_matplotlib.py and pymatviz/ptable/ptable_plotly.py. matplotlib supports heatmaps, heatmap ratios, heatmap splits (multiple values per element), histograms, scatter plots and line plots. plotly currently only supports heatmaps (PRs to port over other matplotlib ptable variants to plotly are very welcome!). The plotly heatmap supports displaying additional data on hover or full interactivity through Dash.

ptable_heatmap(compositions, log=True) ptable_heatmap_ratio(comps_a, comps_b)
ptable-heatmap ptable-heatmap-ratio
ptable_heatmap_plotly(atomic_masses) ptable_heatmap_plotly(compositions, log=True)
ptable-heatmap-plotly-more-hover-data ptable-heatmap-plotly-log
ptable_hists(data, colormap="coolwarm") ptable_hists_plotly(data)
ptable-hists ptable-hists-plotly
ptable_scatters(data, colormap="coolwarm") ptable_lines(data)
ptable-scatters-parity ptable-lines
ptable_heatmap_splits(2_vals_per_elem, colormap="coolwarm", start_angle=135) ptable_heatmap_splits(3_vals_per_elem, colormap="coolwarm", start_angle=90)
ptable-heatmap-splits-2 ptable-heatmap-splits-3
ptable_heatmap_splits_plotly(2_vals_per_elem) ptable_heatmap_splits_plotly(3_vals_per_elem)
ptable-heatmap-splits-plotly-2 ptable-heatmap-splits-plotly-3

Dash app using ptable_heatmap_plotly()

See examples/mprester_ptable.ipynb.

https://user-images.githubusercontent.com/30958850/181644052-b330f0a2-70fc-451c-8230-20d45d3af72f.mp4

Phonons

See examples/mlff_phonons.ipynb for usage example.

phonon_bands(bands_dict) phonon_dos(doses_dict)
phonon-bands phonon-dos
phonon_bands_and_dos(bands_dict, doses_dict) phonon_bands_and_dos(single_bands, single_dos)
phonon-bands-and-dos-mp-2758 phonon-bands-and-dos-mp-23907

Structure

See pymatviz/structure_viz/(mpl|plotly).py. Currently structure plotting is only supported with matplotlib in 2d. 3d interactive plots (probably with plotly) are on the road map.

structure_2d(mp_19017) structure_2d(mp_12712)
struct-2d-mp-19017-Li4Mn0.8Fe1.6P4C1.6O16-disordered struct-2d-mp-12712-Hf9Zr9Pd24-disordered
structure_2d_plotly(six_structs) structure_3d_plotly(six_structs)
matbench-phonons-structures-2d-plotly matbench-phonons-structures-3d-plotly

X-Ray Diffraction

See pymatviz/xrd.py.

xrd_pattern(pattern) xrd_pattern({key1: patt1, key2: patt2})
xrd-pattern xrd-pattern-multiple
xrd_pattern(struct_dict, stack="horizontal") xrd_pattern(struct_dict, stack="vertical", title="Custom Title")
xrd-pattern-horizontal-stack xrd-pattern-vertical-stack

Radial Distribution Functions

See pymatviz/rdf/plotly.py.

rdf_plot(rdf) rdf_plot(rdf, rdf2)
element-pair-rdfs-Na8Nb8O24 element-pair-rdfs-crystal-vs-amorphous

Coordination

See pymatviz/coordination/plotly.py.

coordination_hist(struct_dict) coordination_hist(struct_dict, by_element=True)
coordination-hist-single coordination-hist-by-structure-and-element
coordination_vs_cutoff_line(struct_dict, strategy=None) coordination_vs_cutoff_line(struct_dict, strategy=None)
coordination-vs-cutoff-single coordination-vs-cutoff-multiple

Sunburst

See pymatviz/sunburst.py.

spacegroup_sunburst([65, 134, 225, ...]) spacegroup_sunburst(["C2/m", "P-43m", "Fm-3m", ...])
spg-num-sunburst spg-symbol-sunburst

Rainclouds

See pymatviz/rainclouds.py.

rainclouds(two_key_dict) rainclouds(three_key_dict)
rainclouds-bimodal rainclouds-trimodal

Sankey

See pymatviz/sankey.py.

sankey_from_2_df_cols(df_perovskites) sankey_from_2_df_cols(df_space_groups)
sankey-spglib-vs-aflow-spacegroups sankey-crystal-sys-to-spg-symbol

Histograms

See pymatviz/histogram.py.

spacegroup_bar([65, 134, 225, ...], backend="matplotlib") spacegroup_bar(["C2/m", "P-43m", "Fm-3m", ...], backend="matplotlib")
spg-num-hist-matplotlib spg-symbol-hist-matplotlib
spacegroup_bar([65, 134, 225, ...], backend="plotly") spacegroup_bar(["C2/m", "P-43m", "Fm-3m", ...], backend="plotly")
spg-num-hist-plotly spg-symbol-hist-plotly
elements_hist(compositions, log=True, bar_values='count') histogram({'key1': values1, 'key2': values2})
elements-hist histogram-ecdf

Scatter Plots

See pymatviz/scatter.py.

density_scatter_plotly(df, x=x_col, y=y_col, ...) density_scatter_plotly(df, x=x_col, y=y_col, ...)
density-scatter-plotly density-scatter-plotly-blobs
density_scatter(xs, ys, ...) density_scatter_with_hist(xs, ys, ...)
density-scatter density-scatter-with-hist
density_hexbin(xs, ys, ...) density_hexbin_with_hist(xs, ys, ...)
density-hexbin density-hexbin-with-hist

Uncertainty

See pymatviz/uncertainty.py.

qq_gaussian(y_true, y_pred, y_std) qq_gaussian(y_true, y_pred, y_std: dict)
normal-prob-plot normal-prob-plot-multiple
error_decay_with_uncert(y_true, y_pred, y_std) error_decay_with_uncert(y_true, y_pred, y_std: dict)
error-decay-with-uncert error-decay-with-uncert-multiple

Cumulative Metrics

See pymatviz/cumulative.py.

cumulative_error(preds, targets) cumulative_residual(preds, targets)
cumulative-error cumulative-residual

Classification

See pymatviz/relevance.py.

roc_curve(targets, proba_pos) precision_recall_curve(targets, proba_pos)
roc-curve precision-recall-curve

How to cite pymatviz

See citation.cff or cite the Zenodo record using the following BibTeX entry:

@software{riebesell_pymatviz_2022,
  title = {Pymatviz: visualization toolkit for materials informatics},
  author = {Riebesell, Janosh and Yang, Haoyu and Goodall, Rhys and Baird, Sterling G.},
  date = {2022-10-01},
  year = {2022},
  doi = {10.5281/zenodo.7486816},
  url = {https://github.com/janosh/pymatviz},
  note = {10.5281/zenodo.7486816 - https://github.com/janosh/pymatviz},
  urldate = {2023-01-01}, % optional, replace with your date of access
  version = {0.8.2}, % replace with the version you use
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatviz-0.14.0.tar.gz (165.2 kB view details)

Uploaded Source

Built Distribution

pymatviz-0.14.0-py3-none-any.whl (155.4 kB view details)

Uploaded Python 3

File details

Details for the file pymatviz-0.14.0.tar.gz.

File metadata

  • Download URL: pymatviz-0.14.0.tar.gz
  • Upload date:
  • Size: 165.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pymatviz-0.14.0.tar.gz
Algorithm Hash digest
SHA256 b3a5b77b2a256e148fc5c81cf5a5ba8807713e34cf1572f0bf20efc7254e38e2
MD5 97018609a468ae00a3bbfdf6eb3ce8f4
BLAKE2b-256 17231d19e6c291beee57c6748911aa43a38855d00f60141163eafde0c381b60c

See more details on using hashes here.

Provenance

The following attestation bundles were made for pymatviz-0.14.0.tar.gz:

Publisher: release.yml on janosh/pymatviz

Attestations:

File details

Details for the file pymatviz-0.14.0-py3-none-any.whl.

File metadata

  • Download URL: pymatviz-0.14.0-py3-none-any.whl
  • Upload date:
  • Size: 155.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pymatviz-0.14.0-py3-none-any.whl
Algorithm Hash digest
SHA256 11fd26c6c3e48f69109aed355c92fd7332b8ea01d1ae3ff104787cf2a9cd1948
MD5 9eed246e93efc2689488aa19e57e6f73
BLAKE2b-256 347d19b98443f2e0f439e48881604e179fa80bb07ea9a898ba6d2af945b5f2e9

See more details on using hashes here.

Provenance

The following attestation bundles were made for pymatviz-0.14.0-py3-none-any.whl:

Publisher: release.yml on janosh/pymatviz

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page