A toolkit for visualizations in materials informatics
Project description
pymatviz
A toolkit for visualizations in materials informatics.
If you use
pymatviz
in your research, see how to cite.
🔨 Installation
pip install pymatviz
💡 API Docs
See the /api page.
📙 Usage
See the Jupyter notebooks under examples/
for how to use pymatviz
. PRs with additional examples are welcome! 🙏
matbench_dielectric_eda.ipynb | ||
mp_bimodal_e_form.ipynb | ||
matbench_perovskites_eda.ipynb | ||
mprester_ptable.ipynb |
Periodic Table
See pymatviz/ptable.py
. Heatmaps of the periodic table can be plotted both with matplotlib
and plotly
. plotly
supports displaying additional data on hover or full interactivity through Dash.
ptable_heatmap(compositions, log=True) |
ptable_heatmap_ratio(comps_a, comps_b) |
---|---|
ptable_heatmap_plotly(atomic_masses) |
ptable_heatmap_plotly(compositions, log=True) |
Nested Periodic Table
See pymatviz/ptable.py
. Plot histogram plots and scatter plots nested within periodic table.
ptable_hists(data, colormap="coolwarm" |
ptable_scatters(data, colormap="coolwarm" |
---|
| | |
Phonons
See pymatviz/phonons.py
.
plot_phonon_bands(bands_dict) |
plot_phonon_dos(doses_dict) |
---|---|
plot_phonon_bands_and_dos(bands_dict, doses_dict) |
|
Dash app using ptable_heatmap_plotly()
See examples/mprester_ptable.ipynb
.
Sunburst
See pymatviz/sunburst.py
.
spacegroup_sunburst([65, 134, 225, ...]) |
spacegroup_sunburst(["C2/m", "P-43m", "Fm-3m", ...]) |
---|---|
Sankey
See pymatviz/sankey.py
.
sankey_from_2_df_cols(df_perovskites) |
sankey_from_2_df_cols(df_rand_ints) |
---|---|
Structure
See pymatviz/structure_viz.py
. Currently structure plotting is only supported with matplotlib
in 2d. 3d interactive plots (probably with plotly
) are on the road map.
plot_structure_2d(mp_19017) |
plot_structure_2d(mp_12712) |
---|---|
Histograms
Parity Plots
See pymatviz/parity.py
.
Uncertainty Calibration
qq_gaussian(y_true, y_pred, y_std) |
qq_gaussian(y_true, y_pred, y_std: dict) |
---|---|
error_decay_with_uncert(y_true, y_pred, y_std) |
error_decay_with_uncert(y_true, y_pred, y_std: dict) |
Cumulative Error & Residual
cumulative_error(preds, targets) |
cumulative_residual(preds, targets) |
---|---|
Classification Metrics
roc_curve(targets, proba_pos) |
precision_recall_curve(targets, proba_pos) |
---|---|
Correlation
marchenko_pastur(corr_mat, gamma=ncols/nrows) |
marchenko_pastur(corr_mat_significant_eval, gamma=ncols/nrows) |
---|---|
📖 How to cite pymatviz
You can cite the Zenodo record using the following BibTeX entry:
@software{riebesell_pymatviz_2022,
title = {Pymatviz: visualization toolkit for materials informatics},
author = {Riebesell, Janosh},
date = {2022-10-01},
year = {2022},
doi = {10.5281/zenodo.7486816},
url = {https://github.com/janosh/pymatviz},
note = {10.5281/zenodo.7486816 - https://github.com/janosh/pymatviz},
urldate = {2023-01-01}, % optional, replace with your date of access
version = {0.7.1}, % replace with the version you use
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pymatviz-0.8.1.tar.gz
.
File metadata
- Download URL: pymatviz-0.8.1.tar.gz
- Upload date:
- Size: 89.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 73479c5e5151c54682ceed483a376797160b7041a335e412450af2ccf1e4b815 |
|
MD5 | 450c01782631a1b4289ef4fe58ef1857 |
|
BLAKE2b-256 | bcfb9e47f25899f07ceeb66ccfd62955aba81fa415222c2c9ed581b0ac788537 |
File details
Details for the file pymatviz-0.8.1-py2.py3-none-any.whl
.
File metadata
- Download URL: pymatviz-0.8.1-py2.py3-none-any.whl
- Upload date:
- Size: 70.9 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5b3a41dcc0581b5606e9145faefa572eb35797d63db11db850ffb02990dc4b3c |
|
MD5 | 16b537e8ed963ec3b6dbec2e7f090ec8 |
|
BLAKE2b-256 | a480d2d2146ca7add65d6c99800dc1f3cbe6ac567d4d830addacc5fc484a696d |