Skip to main content

A toolkit for visualizations in materials informatics

Project description

Logo
pymatviz

A toolkit for visualizations in materials informatics.

Tests This project supports Python 3.9+ PyPI PyPI Downloads Zenodo

If you use pymatviz in your research, see how to cite.

🔨   Installation

pip install pymatviz

💡   API Docs

See the /api page.

📙   Usage

See the Jupyter notebooks under examples/ for how to use pymatviz. PRs with additional examples are welcome! 🙏

matbench_dielectric_eda.ipynb Open in Google Colab Launch Codespace
mp_bimodal_e_form.ipynb Open in Google Colab Launch Codespace
matbench_perovskites_eda.ipynb Open in Google Colab Launch Codespace
mprester_ptable.ipynb Open in Google Colab Launch Codespace

Periodic Table

See pymatviz/ptable.py. Heatmaps of the periodic table can be plotted both with matplotlib and plotly. plotly supports displaying additional data on hover or full interactivity through Dash.

ptable_heatmap(compositions, log=True) ptable_heatmap_ratio(comps_a, comps_b)
ptable-heatmap ptable-heatmap-ratio
ptable_heatmap_plotly(atomic_masses) ptable_heatmap_plotly(compositions, log=True)
ptable-heatmap-plotly-more-hover-data ptable-heatmap-plotly-log

Nested Periodic Table

See pymatviz/ptable.py. Plot histogram plots and scatter plots nested within periodic table.

ptable_hists(data, colormap="coolwarm" ptable_scatters(data, colormap="coolwarm"

| ptable-hists | ptable-scatters |

Phonons

See pymatviz/phonons.py.

plot_phonon_bands(bands_dict) plot_phonon_dos(doses_dict)
phonon-bands phonon-dos
plot_phonon_bands_and_dos(bands_dict, doses_dict)
phonon-bands-and-dos

Dash app using ptable_heatmap_plotly()

See examples/mprester_ptable.ipynb.

https://user-images.githubusercontent.com/30958850/181644052-b330f0a2-70fc-451c-8230-20d45d3af72f.mp4

Sunburst

See pymatviz/sunburst.py.

spacegroup_sunburst([65, 134, 225, ...]) spacegroup_sunburst(["C2/m", "P-43m", "Fm-3m", ...])
spg-num-sunburst spg-symbol-sunburst

Sankey

See pymatviz/sankey.py.

sankey_from_2_df_cols(df_perovskites) sankey_from_2_df_cols(df_rand_ints)
sankey-spglib-vs-aflow-spacegroups sankey-from-2-df-cols-randints

Structure

See pymatviz/structure_viz.py. Currently structure plotting is only supported with matplotlib in 2d. 3d interactive plots (probably with plotly) are on the road map.

plot_structure_2d(mp_19017) plot_structure_2d(mp_12712)
struct-2d-mp-19017-Li4Mn0.8Fe1.6P4C1.6O16-disordered struct-2d-mp-12712-Hf9Zr9Pd24-disordered

matbench-phonons-structures-2d

Histograms

See pymatviz/histograms.py.

spacegroup_hist([65, 134, 225, ...], backend="matplotlib") spacegroup_hist(["C2/m", "P-43m", "Fm-3m", ...], backend="matplotlib")
spg-num-hist-matplotlib spg-symbol-hist-matplotlib
spacegroup_hist([65, 134, 225, ...], backend="plotly") spacegroup_hist(["C2/m", "P-43m", "Fm-3m", ...], backend="plotly")
spg-num-hist-plotly spg-symbol-hist-plotly
elements_hist(compositions, log=True, bar_values='count')
elements-hist

Parity Plots

See pymatviz/parity.py.

density_scatter(xs, ys, ...) density_scatter_with_hist(xs, ys, ...)
density-scatter density-scatter-with-hist
density_hexbin(xs, ys, ...) density_hexbin_with_hist(xs, ys, ...)
density-hexbin density-hexbin-with-hist
scatter_with_err_bar(xs, ys, yerr, ...) residual_vs_actual(y_true, y_pred, ...)
scatter-with-err-bar residual-vs-actual

Uncertainty Calibration

See pymatviz/uncertainty.py.

qq_gaussian(y_true, y_pred, y_std) qq_gaussian(y_true, y_pred, y_std: dict)
normal-prob-plot normal-prob-plot-multiple
error_decay_with_uncert(y_true, y_pred, y_std) error_decay_with_uncert(y_true, y_pred, y_std: dict)
error-decay-with-uncert error-decay-with-uncert-multiple

Cumulative Error & Residual

See pymatviz/cumulative.py.

cumulative_error(preds, targets) cumulative_residual(preds, targets)
cumulative-error cumulative-residual

Classification Metrics

See pymatviz/relevance.py.

roc_curve(targets, proba_pos) precision_recall_curve(targets, proba_pos)
roc-curve precision-recall-curve

Correlation

See pymatviz/correlation.py.

marchenko_pastur(corr_mat, gamma=ncols/nrows) marchenko_pastur(corr_mat_significant_eval, gamma=ncols/nrows)
marchenko-pastur marchenko-pastur-significant-eval

📖   How to cite pymatviz

You can cite the Zenodo record using the following BibTeX entry:

@software{riebesell_pymatviz_2022,
  title = {Pymatviz: visualization toolkit for materials informatics},
  author = {Riebesell, Janosh},
  date = {2022-10-01},
  year = {2022},
  doi = {10.5281/zenodo.7486816},
  url = {https://github.com/janosh/pymatviz},
  note = {10.5281/zenodo.7486816 - https://github.com/janosh/pymatviz},
  urldate = {2023-01-01}, % optional, replace with your date of access
  version = {0.7.1}, % replace with the version you use
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatviz-0.8.1.tar.gz (89.1 kB view details)

Uploaded Source

Built Distribution

pymatviz-0.8.1-py2.py3-none-any.whl (70.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pymatviz-0.8.1.tar.gz.

File metadata

  • Download URL: pymatviz-0.8.1.tar.gz
  • Upload date:
  • Size: 89.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for pymatviz-0.8.1.tar.gz
Algorithm Hash digest
SHA256 73479c5e5151c54682ceed483a376797160b7041a335e412450af2ccf1e4b815
MD5 450c01782631a1b4289ef4fe58ef1857
BLAKE2b-256 bcfb9e47f25899f07ceeb66ccfd62955aba81fa415222c2c9ed581b0ac788537

See more details on using hashes here.

File details

Details for the file pymatviz-0.8.1-py2.py3-none-any.whl.

File metadata

  • Download URL: pymatviz-0.8.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 70.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for pymatviz-0.8.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 5b3a41dcc0581b5606e9145faefa572eb35797d63db11db850ffb02990dc4b3c
MD5 16b537e8ed963ec3b6dbec2e7f090ec8
BLAKE2b-256 a480d2d2146ca7add65d6c99800dc1f3cbe6ac567d4d830addacc5fc484a696d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page