Skip to main content

A toolkit for visualizations in materials informatics

Project description

Logo
pymatviz

A toolkit for visualizations in materials informatics.

Tests This project supports Python 3.9+ PyPI PyPI Downloads Zenodo

If you use pymatviz in your research, see how to cite.

Installation

pip install pymatviz

API Docs

See the /api page.

Usage

See the Jupyter notebooks under examples/ for how to use pymatviz. PRs with additional examples are welcome! 🙏

mlff_phonons.ipynb Open in Google Colab Launch Codespace
matbench_dielectric_eda.ipynb Open in Google Colab Launch Codespace
mp_bimodal_e_form.ipynb Open in Google Colab Launch Codespace
matbench_perovskites_eda.ipynb Open in Google Colab Launch Codespace
mprester_ptable.ipynb Open in Google Colab Launch Codespace

Periodic Table

See pymatviz/ptable/ptable_matplotlib.py and pymatviz/ptable/ptable_plotly.py. matplotlib supports heatmaps, heatmap ratios, heatmap splits (multiple values per element), histograms, scatter plots and line plots. plotly currently only supports heatmaps (PRs to port over other matplotlib ptable variants to plotly are very welcome!). The plotly heatmap supports displaying additional data on hover or full interactivity through Dash.

ptable_heatmap(compositions, log=True) ptable_heatmap_ratio(comps_a, comps_b)
ptable-heatmap ptable-heatmap-ratio
ptable_heatmap_plotly(atomic_masses) ptable_heatmap_plotly(compositions, log=True)
ptable-heatmap-plotly-more-hover-data ptable-heatmap-plotly-log
ptable_hists(data, colormap="coolwarm") ptable_lines(data)
ptable-hists ptable-lines
ptable_scatters(data, colormap="coolwarm") ptable_scatters(data, colormap="coolwarm")
ptable-scatters-parity ptable-scatters-parabola
ptable_heatmap_splits(2_vals_per_elem, colormap="coolwarm", start_angle=135) ptable_heatmap_splits(3_vals_per_elem, colormap="coolwarm", start_angle=90)
ptable-heatmap-splits-2 ptable-heatmap-splits-3

Phonons

See examples/mlff_phonons.ipynb for usage example.

plot_phonon_bands(bands_dict) plot_phonon_dos(doses_dict)
phonon-bands phonon-dos
plot_phonon_bands_and_dos(bands_dict, doses_dict) plot_phonon_bands_and_dos(single_bands, single_dos)
phonon-bands-and-dos-mp-2758 phonon-bands-and-dos-mp-23907

Dash app using ptable_heatmap_plotly()

See examples/mprester_ptable.ipynb.

https://user-images.githubusercontent.com/30958850/181644052-b330f0a2-70fc-451c-8230-20d45d3af72f.mp4

Sunburst

See pymatviz/sunburst.py.

spacegroup_sunburst([65, 134, 225, ...]) spacegroup_sunburst(["C2/m", "P-43m", "Fm-3m", ...])
spg-num-sunburst spg-symbol-sunburst

Sankey

See pymatviz/sankey.py.

sankey_from_2_df_cols(df_perovskites) sankey_from_2_df_cols(df_rand_ints)
sankey-spglib-vs-aflow-spacegroups sankey-from-2-df-cols-randints

Structure

See pymatviz/structure_viz.py. Currently structure plotting is only supported with matplotlib in 2d. 3d interactive plots (probably with plotly) are on the road map.

plot_structure_2d(mp_19017) plot_structure_2d(mp_12712)
struct-2d-mp-19017-Li4Mn0.8Fe1.6P4C1.6O16-disordered struct-2d-mp-12712-Hf9Zr9Pd24-disordered

matbench-phonons-structures-2d

Histograms

See pymatviz/histograms.py.

spacegroup_hist([65, 134, 225, ...], backend="matplotlib") spacegroup_hist(["C2/m", "P-43m", "Fm-3m", ...], backend="matplotlib")
spg-num-hist-matplotlib spg-symbol-hist-matplotlib
spacegroup_hist([65, 134, 225, ...], backend="plotly") spacegroup_hist(["C2/m", "P-43m", "Fm-3m", ...], backend="plotly")
spg-num-hist-plotly spg-symbol-hist-plotly
elements_hist(compositions, log=True, bar_values='count') plot_histogram({'key1': values1, 'key2': values2})
elements-hist plot-histogram-ecdf

Scatter Plots

See pymatviz/scatter.py.

density_scatter_plotly(df, x=x_col, y=y_col, ...) density_scatter_plotly(df, x=x_col, y=y_col, ...)
density-scatter-plotly density-scatter-plotly-blobs
density_scatter(xs, ys, ...) density_scatter_with_hist(xs, ys, ...)
density-scatter density-scatter-with-hist
density_hexbin(xs, ys, ...) density_hexbin_with_hist(xs, ys, ...)
density-hexbin density-hexbin-with-hist

X-Ray Diffraction

See pymatviz/xrd.py.

plot_xrd_pattern(pattern) plot_xrd_pattern({key1: patt1, key2: patt2})
xrd-pattern xrd-pattern-multiple

Uncertainty

See pymatviz/uncertainty.py.

qq_gaussian(y_true, y_pred, y_std) qq_gaussian(y_true, y_pred, y_std: dict)
normal-prob-plot normal-prob-plot-multiple
error_decay_with_uncert(y_true, y_pred, y_std) error_decay_with_uncert(y_true, y_pred, y_std: dict)
error-decay-with-uncert error-decay-with-uncert-multiple

Cumulative Metrics

See pymatviz/cumulative.py.

cumulative_error(preds, targets) cumulative_residual(preds, targets)
cumulative-error cumulative-residual

Classification

See pymatviz/relevance.py.

roc_curve(targets, proba_pos) precision_recall_curve(targets, proba_pos)
roc-curve precision-recall-curve

Correlation

See pymatviz/correlation.py.

marchenko_pastur(corr_mat, gamma=ncols/nrows) marchenko_pastur(corr_mat_significant_eval, gamma=ncols/nrows)
marchenko-pastur marchenko-pastur-significant-eval

How to cite pymatviz

See citation.cff or cite the Zenodo record using the following BibTeX entry:

@software{riebesell_pymatviz_2022,
  title = {Pymatviz: visualization toolkit for materials informatics},
  author = {Riebesell, Janosh and Yang, Haoyu and Goodall, Rhys and Baird, Sterling G.},
  date = {2022-10-01},
  year = {2022},
  doi = {10.5281/zenodo.7486816},
  url = {https://github.com/janosh/pymatviz},
  note = {10.5281/zenodo.7486816 - https://github.com/janosh/pymatviz},
  urldate = {2023-01-01}, % optional, replace with your date of access
  version = {0.8.2}, % replace with the version you use
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymatviz-0.9.3.tar.gz (125.3 kB view details)

Uploaded Source

Built Distribution

pymatviz-0.9.3-py2.py3-none-any.whl (107.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pymatviz-0.9.3.tar.gz.

File metadata

  • Download URL: pymatviz-0.9.3.tar.gz
  • Upload date:
  • Size: 125.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for pymatviz-0.9.3.tar.gz
Algorithm Hash digest
SHA256 3343fdea45b780bb2b72e3c7e1344464d3f45c5319bc0b97ecb94b79ba00cbed
MD5 cd8d84017e1d1f620ad0ca4c3dce76dd
BLAKE2b-256 eb851a498a13eec13a40b0d5d4ec1834cabbdd876f27b2f4eb1c28f00c0d1189

See more details on using hashes here.

File details

Details for the file pymatviz-0.9.3-py2.py3-none-any.whl.

File metadata

  • Download URL: pymatviz-0.9.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 107.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for pymatviz-0.9.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 bae3196ae1f82a56f4bd9ab31cb0a01fcf380fb461a4ea47aed558d3eeb185d4
MD5 4eeeb0a021de9d444b0d077b5bd07389
BLAKE2b-256 6ecb4289338f2ba14c8af659729c805b5eaf7d60545a2912a341875b5629ce19

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page