Skip to main content

Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Theano

Project description

https://zenodo.org/badge/231738459.svg PyMC3 logo

Build Status Coverage NumFOCUS_badge Binder Dockerhub

PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) and variational inference (VI) algorithms. Its flexibility and extensibility make it applicable to a large suite of problems.

Check out the getting started guide, or interact with live examples using Binder!

Features

  • Intuitive model specification syntax, for example, x ~ N(0,1) translates to x = Normal('x',0,1)

  • Powerful sampling algorithms, such as the No U-Turn Sampler, allow complex models with thousands of parameters with little specialized knowledge of fitting algorithms.

  • Variational inference: ADVI for fast approximate posterior estimation as well as mini-batch ADVI for large data sets.

  • Relies on Theano which provides:
    • Computation optimization and dynamic C compilation

    • Numpy broadcasting and advanced indexing

    • Linear algebra operators

    • Simple extensibility

  • Transparent support for missing value imputation

Getting started

If you already know about Bayesian statistics:

Learn Bayesian statistics with a book together with PyMC3:

PyMC3 talks

There are also several talks on PyMC3 which are gathered in this YouTube playlist

Installation

The latest release of PyMC3 can be installed from PyPI using pip:

pip install pymc3

Note: Running pip install pymc will install PyMC 2.3, not PyMC3, from PyPI.

Or via conda-forge:

conda install -c conda-forge pymc3

Plotting is done using ArviZ which may be installed separately, or along with PyMC3:

pip install pymc3[plots]

The current development branch of PyMC3 can be installed from GitHub, also using pip:

pip install git+https://github.com/pymc-devs/pymc3

To ensure the development branch of Theano is installed alongside PyMC3 (recommended), you can install PyMC3 using the requirements.txt file. This requires cloning the repository to your computer:

git clone https://github.com/pymc-devs/pymc3
cd pymc3
pip install -r requirements.txt

However, if a recent version of Theano has already been installed on your system, you can install PyMC3 directly from GitHub.

Another option is to clone the repository and install PyMC3 using python setup.py install or python setup.py develop.

Dependencies

PyMC3 is tested on Python 3.6 and depends on Theano, NumPy, SciPy, and Pandas (see requirements.txt for version information).

Optional

In addtion to the above dependencies, the GLM submodule relies on Patsy.

Citing PyMC3

Salvatier J., Wiecki T.V., Fonnesbeck C. (2016) Probabilistic programming in Python using PyMC3. PeerJ Computer Science 2:e55 DOI: 10.7717/peerj-cs.55.

Contact

We are using discourse.pymc.io as our main communication channel. You can also follow us on Twitter @pymc_devs for updates and other announcements.

To ask a question regarding modeling or usage of PyMC3 we encourage posting to our Discourse forum under the “Questions” Category. You can also suggest feature in the “Development” Category.

To report an issue with PyMC3 please use the issue tracker.

Finally, if you need to get in touch for non-technical information about the project, send us an e-mail.

License

Apache License, Version 2.0

Software using PyMC3

  • Exoplanet: a toolkit for modeling of transit and/or radial velocity observations of exoplanets and other astronomical time series.

  • Bambi: BAyesian Model-Building Interface (BAMBI) in Python.

  • pymc3_models: Custom PyMC3 models built on top of the scikit-learn API.

  • PMProphet: PyMC3 port of Facebook’s Prophet model for timeseries modeling

  • webmc3: A web interface for exploring PyMC3 traces

  • sampled: Decorator for PyMC3 models.

  • NiPyMC: Bayesian mixed-effects modeling of fMRI data in Python.

  • beat: Bayesian Earthquake Analysis Tool.

Please contact us if your software is not listed here.

Papers citing PyMC3

See Google Scholar for a continuously updated list.

Contributors

See the GitHub contributor page

Support

PyMC3 is a non-profit project under NumFOCUS umbrella. If you want to support PyMC3 financially, you can donate here.

Sponsors

NumFOCUS

Quantopian

ODSC

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymc3_ext-wlad-0.2.1.tar.gz (35.6 MB view details)

Uploaded Source

Built Distribution

pymc3_ext_wlad-0.2.1-py3-none-any.whl (422.3 kB view details)

Uploaded Python 3

File details

Details for the file pymc3_ext-wlad-0.2.1.tar.gz.

File metadata

  • Download URL: pymc3_ext-wlad-0.2.1.tar.gz
  • Upload date:
  • Size: 35.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.3

File hashes

Hashes for pymc3_ext-wlad-0.2.1.tar.gz
Algorithm Hash digest
SHA256 a1d9edfa798eb760bf04c7f34f15f9f9bacad0f2fd3b29e753b65fbff006dd3b
MD5 ddb98c25c53ef7d3c889f600a648aa90
BLAKE2b-256 45fb6aaf836eb2aaec98df243f461246570057af7874557289d4845f4a0afc05

See more details on using hashes here.

File details

Details for the file pymc3_ext_wlad-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: pymc3_ext_wlad-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 422.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.3

File hashes

Hashes for pymc3_ext_wlad-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4aaae3636e2bc1cbbf370279ae12031f63fd5880407ff866588029f84680d466
MD5 6ec0a1c6e1e57a3fd3d111d5ccc4fb11
BLAKE2b-256 61c6d1eceb80a57157e314a36faf0461617343f29b923ef01d8e794ba4ab178c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page