Skip to main content

Mapping and X-Ray Fluorescence Analysis

Project description

Stand-alone application and Python tools for interactive and/or batch processing analysis of X-Ray Fluorescence Spectra. Graphical user interface (GUI) and batch processing capabilities provided

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymca5-5.9.3.tar.gz (15.9 MB view details)

Uploaded Source

Built Distributions

PyMca5-5.9.3-cp313-cp313-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.13 Windows x86-64

PyMca5-5.9.3-cp312-cp312-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

PyMca5-5.9.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

PyMca5-5.9.3-cp312-cp312-macosx_10_9_universal2.whl (10.1 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.9.3-cp311-cp311-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

PyMca5-5.9.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

PyMca5-5.9.3-cp311-cp311-macosx_10_9_universal2.whl (10.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.9.3-cp310-cp310-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

PyMca5-5.9.3-cp310-cp310-macosx_10_9_universal2.whl (10.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.9.3-cp39-cp39-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

PyMca5-5.9.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

PyMca5-5.9.3-cp39-cp39-macosx_10_9_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

PyMca5-5.9.3-cp39-cp39-macosx_10_9_universal2.whl (10.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.9.3-cp38-cp38-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

PyMca5-5.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

PyMca5-5.9.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

PyMca5-5.9.3-cp38-cp38-macosx_11_0_universal2.whl (10.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ universal2 (ARM64, x86-64)

PyMca5-5.9.3-cp38-cp38-macosx_10_9_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyMca5-5.9.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

File details

Details for the file pymca5-5.9.3.tar.gz.

File metadata

  • Download URL: pymca5-5.9.3.tar.gz
  • Upload date:
  • Size: 15.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.3

File hashes

Hashes for pymca5-5.9.3.tar.gz
Algorithm Hash digest
SHA256 0d4bcaad9352f26eef64ab6890c339fd2e3e9f382a2339518ffe245994bf79c6
MD5 4eda168c9b964c5f184932900c95db0c
BLAKE2b-256 e3b26663d59607a9bb9cc09b381e0a6dd360cac14411137f234538b44b1f8e77

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.3-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.3-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.13.0

File hashes

Hashes for PyMca5-5.9.3-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 8beb6979f7f8f1b75c2ef41d4b548fae87cf5051a64efaff625ace63db1707c7
MD5 1662146da0d3ac31535a4581449b86a9
BLAKE2b-256 639fb08ab07e461b13772899fe0a22bbbdb7ab4ec3292e7742333a1521bd6ea0

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.3

File hashes

Hashes for PyMca5-5.9.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a18a66cdda8cd198f8eff7a02b1dc70f73cb957739b5a59b88da9569f940a2e0
MD5 6e4c22d729bb00471e5f038b9add0786
BLAKE2b-256 815ec3d703088161888f2799b5971545dc67d993747650b860a47b599f13c6cb

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 316bd999cd404056966391d631dd99bd9f1bf6a637c127fade4d7a099e0fab6b
MD5 87772be94e6bbb3453274a4351150988
BLAKE2b-256 662b293a5e0197ed9ecdd235d50a9ece9d4265c3b7641eae4a0b1b2a53dc7135

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.3-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.3-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 44754b8db7889976591b55ad3445c5e22146615fc2d2db0e4271421167352876
MD5 864cde0354dfc88865f1e607d29e08bf
BLAKE2b-256 363c51011d70b18b2e13c9be73ea73267c6763896f100779693efa37c8f1cce2

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.3

File hashes

Hashes for PyMca5-5.9.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 739ea32bf4f2bc9c01960d37cbc0932f19a5e86eee4b711e75ee25e6a4d66bb5
MD5 c0fc6fee00b3a49d5b65d2a66b21c5bd
BLAKE2b-256 d0090792ee44083650a126dbbad30bdfb7c28ca0a3a43cbeaa97a6a8280f2008

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e070122687ba66871b556503a1767277e560eaa488ffc5777ee702abd873892d
MD5 8c6fdbb8f32f17995b39d8b12f284cdf
BLAKE2b-256 cfed2d3a6ffcf01c22e4fb6c19c50f428fa8ab322b346f4a01b9673e2e5430d0

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.3-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.3-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d5ab46e69b517a6004d2a64519261b565cf7c0d8f3dd6cb9b2ba07be91cc92ff
MD5 0aa1887fcbd851aefb86b7b9410690d7
BLAKE2b-256 81de8ba0079513d0b54916accb94552337c6ba29a796d1490d749c0476426043

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.3

File hashes

Hashes for PyMca5-5.9.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 73c912d3465d0fcdbe26266b136f2d9611d1333fbd4c8aec01668d94a0b14f12
MD5 5c00530208320ff5c71a30ad22243b31
BLAKE2b-256 ca3084eceb37e03b9c501ec206b8b11ea3ad6066f5a1982eaa9e138801f16fea

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 12d6182f4b231f022f5d02f813006a4d468616bb73fa62c164d2dc718f4f1a11
MD5 0d8c69ffb592e9e74c850cb87700b899
BLAKE2b-256 28bbae3cb504d033ad26c49782ecb1b7f6737885f8f4ec8987499615c71f694b

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.3

File hashes

Hashes for PyMca5-5.9.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 857b50b0d32024017397ef3d720a51e316592053948c2c4404ab4b6cd8af1b8f
MD5 b1fc6a91c7ec7810f0a8b0eae0a71a23
BLAKE2b-256 42fd6ad11af7c28ebc30ffb2e37892d77eb435a326826ddf6d17f977a6ff1166

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e71d8b2dfe20e838fdc44934b2c5adc73e5c53a31dc55d03ad0381478e9bda5d
MD5 3ba005c3ce4d89db30cb81f88896c974
BLAKE2b-256 18f9f6a1ee6451df96103893601bd14ca2e014252f603ddb04b274da89dee7f9

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 31d13953882edc448365cdd8e09c628ce5d02047fd45c86e82fab3fab3c336e7
MD5 363ee1b38603bcce5b074fbb2071370b
BLAKE2b-256 f74e1f6b93b70f100a806d545cb9be6b0704fbb7f4f957377a1187ed292a5094

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8561204dbbfd28e54ae15cfeef18a8f4076ff011f13391be5023d98d38079720
MD5 a7d249efe0d974557b55e02c7d94f8ab
BLAKE2b-256 f0b6a1eafdf804f330081bf281a20a5e0508287cd08fdcf11df04bc3bce1e6e0

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.3

File hashes

Hashes for PyMca5-5.9.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8ccb68fb04e2d0c15d8536a694e708c329694a36464e2b63de74963c00b3a942
MD5 3f3b7309553171500c32f479349a468b
BLAKE2b-256 7cefd7935c71d3cad3d5cf73e9c03483002156d0e1b7d4e97ea956bed1ee230d

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0f364850759c77e6a42271812405160eaf4c21bfd82f8f636c783f79778c37b2
MD5 355441b362bdc31ea7ca96733637fed5
BLAKE2b-256 38146b4d2cb040c6956058d0690000882d2f36859d4ce79c5c9638a9bbeedd30

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 cdbb83ff8cfe722a05cbf237e98f87b32145672f248ba206b5a315d5db6d3c47
MD5 55c2a65a0111b38af43be685d1877edb
BLAKE2b-256 e5464481e1329e5a1fd08d8dba9e6cac794c8738ffbecdd55e13773dd4d86901

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.3-cp38-cp38-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.3-cp38-cp38-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 dd1879af9b5ae6908e77e423185caa02f653e0f8c2d1277cea374f60b8862ef6
MD5 47bc2e26054b6fdb42964e7a5f8f4db8
BLAKE2b-256 53dd9bb01aec613d194c89cdf003a375def63dc9622bd46b3d88a5e30c1a4632

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3707b81be1b3af51cc481551f0becda632fb2c82e45bbe2e48532ec613069831
MD5 63ba9f979351a95819470fdd30a6b088
BLAKE2b-256 720996dad44d01dd5c1efbb5859332a606f3c10d00e929ae508c63808206787a

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c71010924909a25d1998f0cca465fda8aef0273b475d4dfb735834926f32972a
MD5 932536fe8d38354a2688727608e6760a
BLAKE2b-256 1f2f03a7ec44d863588afab65e4957dd4c02fa92f8a4cbe349ad8e291df4647f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page