Skip to main content

The pymCADRE tool is an advanced re-implementation of the metabolic Context-specificity Assessed by Deterministic Reaction Evaluation (mCADRE) algorithm in Python. It constructs tissue-specific metabolic models by leveraging gene expression data and literature-based evidence, along with network topology information.

Project description

pymCADRE

License (LGPL version 3) Latest version Code Size Downloads of all releases

drawing

Authors : Nantia Leonidou

Publication

When using pymCADRE in a research work, please cite the following work:

Leonidou, N., Renz, A., Mostolizadeh, R., & Dräger, A. (2023). New workflow predicts drug targets against SARS-CoV-2 via metabolic changes in infected cells. PLOS Computational Biology, 19(3), e1010903. DOI

Overview.

The pymCADRE tool is an advanced re-implementation of the metabolic Context-specificity Assessed by Deterministic Reaction Evaluation (mCADRE) algorithm in Python. It constructs tissue-specific metabolic models by leveraging gene expression data and literature-based evidence, along with network topology information.

The reactions within the generic global model are being ranked, and the ones with the lowest supporting evidence for the tissue of interest are given the highest priority for removal:

GM, C, NC, P, Z, model_C = rank_reactions(model, G, U, confidence_scores, C_H_genes, method)

If the generic functionality test is passed, the model undergoes pruning, which results in a context-specific reconstruction:

PM, cRes = prune_model(GM, P, C, Z, eta, precursorMets, salvage_check, C_H_genes, method)

Installation

pip install pymcadre

Prerequisites

This tool has the following dependencies:

python >=3.8.5

Packages:

  • pandas
  • numpy
  • cobra
  • requests
  • os

Input data

  • model: COBRA model structure for the metabolic model of interest
  • precursorMets: list of precursor, key, metabolites in form of .txt file
  • confidence_scores: literature/experimental-based confidence assigned to reactions in model

Tissue-specific expression evidence:

  • G: list of Entrez IDs for all genes in model
  • U: list of ubiquity scores calculated for all genes in model
Optional Inputs
  • salvageCheck: flag whether to perform a functional check for the nucleotide salvage pathway (1) or not (0)
  • C_H_genes: list with Entrez IDs for genes with particularly strong evidence of activity in the tissue of interest
  • method: method to use internal optimizations, (1) flux variability analysis or (2) fastcc

Outputs

  • PM: pruned COBRA tissue-specific model
  • GM: COBRA model after removing blocked reactions from the input global model
  • C: core reactions in GM
  • NC: non-core reactions in GM
  • Z: reactions with zero expression across all samples after binarization
  • model_C: core reactions in the generic model (including blocked reactions)
  • pruneTime: total reaction pruning time
  • cRes: result of model checks (consistency/function) during pruning

Usage

To run pymCADRE, execute the notebook named main_pymcadre.ipynb or the python script named pymcadre.py. The scripts can be modified to the preferred parameters and input files. Jupyter notebooks with test runs and test scripts are also provided as reference points.

Additional material

PREDICATE (Prediction of Antiviral Targets):

Steps:

  • introduction of mutations in the reference sequence based on the protein sequences
  • calculation of the necessary stoichiometric coefficients for the final virus biomass functions
  • target detection using two approaches: reaction knock-outs and the host-derived enforcement
  • visualizations that could give insights into the dataset and a better understanding of the results.

The tool can be applied to either one or more nucleotide sequences and all existing RNA viruses. This makes it particularly advantageous and time-saving when studying multiple variants of a single virus. The number of genomic input sequences equals the number of the calculated VBOF.

To run the tool, set the constant variables to the file pathways where the desired files are stored.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymCADRE-1.2.5.tar.gz (38.0 kB view details)

Uploaded Source

Built Distribution

pymCADRE-1.2.5-py3-none-any.whl (77.3 kB view details)

Uploaded Python 3

File details

Details for the file pymCADRE-1.2.5.tar.gz.

File metadata

  • Download URL: pymCADRE-1.2.5.tar.gz
  • Upload date:
  • Size: 38.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.5

File hashes

Hashes for pymCADRE-1.2.5.tar.gz
Algorithm Hash digest
SHA256 64fdd6b78d1fd6d7b83701f98dc3e1bc4ba492cf21c99efa47d2ccb9b6f8572a
MD5 8428c759a3aabdf978bbea34e3944409
BLAKE2b-256 3deb0ad6ae26af9e35227c3893bb4f2c02a17082db8b890736cbb79865de21f0

See more details on using hashes here.

File details

Details for the file pymCADRE-1.2.5-py3-none-any.whl.

File metadata

  • Download URL: pymCADRE-1.2.5-py3-none-any.whl
  • Upload date:
  • Size: 77.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.5

File hashes

Hashes for pymCADRE-1.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 993914f9950c41f9390d0cbf4490f1de7adf05456c1fe326e86a44a87917a140
MD5 00b59b4ebbfb29292bd5acbd7d4c5210
BLAKE2b-256 337932786945957725912f3cc062f7fdd2e9530b47dea667855eb8af725a5a33

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page