Skip to main content

Pymef is a wrapper library for Multiscale Electrophysiology Format developed by MSEL laboratory.

Project description

Tests Documentation Status

Pymef

Pymef is a wrapper library for Multiscale Electrophysiology Format developed by MSEL laboratory.

Currently available for all major distributions (Linux, Mac OS, Windows). Only python 3 is supported.

Mef v 3.0 basic features

  • Support for parallelisation of signal processing
  • Data compression
  • Data encryption
  • Real-time read/write, failure when writing file leaves intact valid files
  • CRC functionality to detect data corruption
  • Support for time discontinuities
  • Support for time series and video channels

Wrapper features

  • MEF3 files write/read
  • Convenience functions to easily read data and metadata for multiple channels

Installation

To install please use:

pip install pymef

To install from source:

python setup.py install

Usage

from pymef.mef_session import MefSession

session_path = '/path/to/session.mefd'
password     = 'mef_password'          // leave blank if no password

# read session metadata
ms = MefSession(session_path, password)

# read data of a single channel from beginning to end
data = ms.read_ts_channels_sample('Ch01', [[None, None]])

# read data of multiple channels from beginning to end
data = ms.read_ts_channels_sample(['Ch01', 'Ch05'], [[None, None]])

Documentation

The MEF3 specification can be found here. The PyMef documentation can be found here.

Support

Please report problems to jan.cimbalnik@fnusa.cz.

License

Pymef is licensed under the Apache software license. See LICENSE.txt for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pymef-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (383.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pymef-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl (175.9 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pymef-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (378.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pymef-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl (175.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pymef-1.4.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (376.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pymef-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl (175.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pymef-1.4.5-cp39-cp39-win_amd64.whl (133.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

pymef-1.4.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (376.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pymef-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl (175.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pymef-1.4.5-cp38-cp38-win_amd64.whl (133.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

pymef-1.4.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (382.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pymef-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl (175.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pymef-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e5f5658e57459d8ecaccdd1459a6cde7c5cb46f7726e9c15b925349ffb3b0f46
MD5 092d3d3686a362ac63e5e1376e2a2bf9
BLAKE2b-256 58381a758c8d1a3eb75cf2693fc98b7c9161c08b89049acab3412cef300050f8

See more details on using hashes here.

File details

Details for the file pymef-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5d183be480fe20e63978946131bbf629db87928e78ca08baeb36d7769eb3f7b8
MD5 df4a7a065b6f7e2479058a2ab3ed8f97
BLAKE2b-256 c66940727cf367ea6c0f56741cdf0312c6aa0c73ec79e61c4798e31abc65f6cd

See more details on using hashes here.

File details

Details for the file pymef-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dc85580aeddc8dcd28a33929bee69b7ff34ef7967f0f2f6243f6fe9f4eaafab2
MD5 a17e96b6c1a1c9cf81963978cbd7c61f
BLAKE2b-256 e85cf351e17fb23473f51c6f584e57cf98d7aa0e8dd497569734e52caa1181ea

See more details on using hashes here.

File details

Details for the file pymef-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 07ee7bf65cd62894b2a2986ddc4726b74dc8ba4427e282eae36d580c9d54f305
MD5 dc82afe68b106b21e2277d3788b6b390
BLAKE2b-256 ca461344d055158e5b999e0019b27640bbf26ddd047bbf9df256cd2a89988162

See more details on using hashes here.

File details

Details for the file pymef-1.4.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9f539c1be0fbea32b387d03a047d7eba386331352af431b6a34c5f4b7da5ae68
MD5 9711ac5cf179812f006bdc70f29bc52a
BLAKE2b-256 640f4401ef0998ccea5611898eff419e4cf5bd69c90a4c514173ab05ec343229

See more details on using hashes here.

File details

Details for the file pymef-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 49f9b775f2fe25b98480349c86d339fe3abe16284fb1b95f9db8b2391a21ccaf
MD5 8582cc1976eb909180796a86661234c9
BLAKE2b-256 3f5268a5d88756e00dad2a1e19a03866afb6c7a779f8e40c780472f1d3bbd565

See more details on using hashes here.

File details

Details for the file pymef-1.4.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pymef-1.4.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 133.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pymef-1.4.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1a5c3ca86b88a3a117b98a1b286513ef980362b8344750850f9b19be2936c022
MD5 3c17bc3a540e2d4d6ae3354dbfc9ce64
BLAKE2b-256 ef629dfb8b0b63a510a126e8d85a6089550c44459f0e76a4ea25c2a86b4f43e1

See more details on using hashes here.

File details

Details for the file pymef-1.4.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f45e25bc43cadea0db8e5896e1e3e59a4a6fd07568fadcdb648fe8e45f55753f
MD5 233c2bb14c9155fce1d2fc4350b59cd3
BLAKE2b-256 b6906553726485df617daaa38fe56687ee8161b92b6dc26d5d9b41125aee7126

See more details on using hashes here.

File details

Details for the file pymef-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3aa5535a36f3ae3d9546cfbbe671aa383a2c8c9d5b50f223c9388f8f19a06d2f
MD5 91324f32c95cf92fa68de415b2a50c27
BLAKE2b-256 821a1d03161b5ba55755a4ae99419943f229ee6204a51ba2224f8cc01bc933ff

See more details on using hashes here.

File details

Details for the file pymef-1.4.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pymef-1.4.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 133.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pymef-1.4.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5d72f71fc30bf25b5e8f2e5f0a1381d58d08a7c561afb06005dd14a2405d8d2f
MD5 aae629e23783529c3e69dc11ad66b983
BLAKE2b-256 7a3cfb579bde67fced6a5c4671a08b9e1604ba65e4e7ff4301205741a6f960aa

See more details on using hashes here.

File details

Details for the file pymef-1.4.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 18f3e08338b3c226045dcfbb17d80c7db630dcb34f96ea952eebc44ee2ba49d0
MD5 f224ad08e15f4fd1cb78fd0d52d57912
BLAKE2b-256 d08fb5b9c8f0a4b3dcf0afb8e48735bd5869a7f492ee74565d74e284acb8356e

See more details on using hashes here.

File details

Details for the file pymef-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bfa00a396632afe3b3f8fc2d1bce2629a7ab578676d996674a077e9f5cf81cd6
MD5 c87498c9d54f1f708fd2a5d4a738e489
BLAKE2b-256 d3eb9ce6d6f43d5d0b347408b40aea73f4a164ec85d97fc6901765550d346787

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page