Skip to main content

Pymef is a wrapper library for Multiscale Electrophysiology Format developed by MSEL laboratory.

Project description

Tests Documentation Status

Pymef

Pymef is a wrapper library for Multiscale Electrophysiology Format developed by MSEL laboratory.

Currently available for all major distributions (Linux, Mac OS, Windows). Only python 3 is supported.

Mef v 3.0 basic features

  • Support for parallelisation of signal processing
  • Data compression
  • Data encryption
  • Real-time read/write, failure when writing file leaves intact valid files
  • CRC functionality to detect data corruption
  • Support for time discontinuities
  • Support for time series and video channels

Wrapper features

  • MEF3 files write/read
  • Convenience functions to easily read data and metadata for multiple channels

Installation

To install please use:

pip install pymef

To install from source:

python setup.py install

Usage

from pymef.mef_session import MefSession

session_path = '/path/to/session.mefd'
password     = 'mef_password'          // leave blank if no password

# read session metadata
ms = MefSession(session_path, password)

# read data of a single channel from beginning to end
data = ms.read_ts_channels_sample('Ch01', [[None, None]])

# read data of multiple channels from beginning to end
data = ms.read_ts_channels_sample(['Ch01', 'Ch05'], [[None, None]])

Documentation

The MEF3 specification can be found here. The PyMef documentation can be found here.

Support

Please report problems to jan.cimbalnik@fnusa.cz.

License

Pymef is licensed under the Apache software license. See LICENSE.txt for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymef-1.4.2.tar.gz (134.7 kB view details)

Uploaded Source

Built Distributions

pymef-1.4.2-cp311-cp311-win_amd64.whl (129.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

pymef-1.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (373.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pymef-1.4.2-cp311-cp311-macosx_10_9_x86_64.whl (167.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pymef-1.4.2-cp310-cp310-win_amd64.whl (129.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

pymef-1.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (371.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pymef-1.4.2-cp310-cp310-macosx_10_9_x86_64.whl (167.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pymef-1.4.2-cp39-cp39-win_amd64.whl (129.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

pymef-1.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (371.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pymef-1.4.2-cp39-cp39-macosx_10_9_x86_64.whl (167.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pymef-1.4.2-cp38-cp38-win_amd64.whl (129.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

pymef-1.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (378.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pymef-1.4.2-cp38-cp38-macosx_10_9_x86_64.whl (167.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pymef-1.4.2-cp37-cp37m-win_amd64.whl (129.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

pymef-1.4.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (366.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pymef-1.4.2-cp37-cp37m-macosx_10_9_x86_64.whl (166.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pymef-1.4.2.tar.gz.

File metadata

  • Download URL: pymef-1.4.2.tar.gz
  • Upload date:
  • Size: 134.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for pymef-1.4.2.tar.gz
Algorithm Hash digest
SHA256 b4a3a13dfa2e2c6e59990617909ceeb6b3fabbb06d6eea6790afdf9d102c05d8
MD5 15daf309ac560acc38170912132d78b8
BLAKE2b-256 1357392a1f247195b18370b4734511a47dc0de1a3371a34bfafa1bab394b9674

See more details on using hashes here.

File details

Details for the file pymef-1.4.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pymef-1.4.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 129.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for pymef-1.4.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ee46efb656b5290b9371340e51e854a9700119827caf188cfaa661187f6aab1b
MD5 b8775cb4d8febcc3b76a5870b5d180d6
BLAKE2b-256 ef6d27d20b33b484fb0df5f25ab012027a27662aa91e2c949f048dadcbf51966

See more details on using hashes here.

File details

Details for the file pymef-1.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3c3ac7d712cc352907810a6c36abf7207b21898df571adc2368b0ae083dabceb
MD5 b0770550c2c06129dcc62fec32bbba1e
BLAKE2b-256 5a3e766e4b009db3d16810d4c2dee7d48eb32e3164426c42cc865929f0c48703

See more details on using hashes here.

File details

Details for the file pymef-1.4.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 de7701737dded7194297c6018b552699fec46439537866439551be91da7239c8
MD5 2a62861cc5d4606acd05a9a4456cf3b5
BLAKE2b-256 0f3c532f8e740b7079729b38a0f61edb9c29d85feddfdc9a754978ab09c66d9d

See more details on using hashes here.

File details

Details for the file pymef-1.4.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pymef-1.4.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 129.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for pymef-1.4.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 15c35135479fe5eab6b2ff184579b3e3bb5011b8ec3ebc836969b46334202508
MD5 650561308fa3f1a3cb5fd8f4efc4f697
BLAKE2b-256 eaa333cc6fb07d963dd416f621d1790d6071854d6d9ad8904c1345fb806832c3

See more details on using hashes here.

File details

Details for the file pymef-1.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3f71077299f4db38401086b4809c81fc02b4a313d3969987162c1a0719c18454
MD5 ccd67083e0b996f40c453c81c1ddfa11
BLAKE2b-256 a02a2037e31c54b91d37fb1f883fd96750dc93611c201676207dfc761b3b0f85

See more details on using hashes here.

File details

Details for the file pymef-1.4.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 95258cc3ba8af57ef80705a361abc2df747192fdca9de6079ca5ccfd3375cd43
MD5 107d6159f9059e17ae7c8cc7980623ce
BLAKE2b-256 c252d24e0d1085a982aa71290bfd07d2fe8478dcea6f10e9cafa5da866d9edb8

See more details on using hashes here.

File details

Details for the file pymef-1.4.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pymef-1.4.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 129.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for pymef-1.4.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6991f1556ddf72afeff95921657aafbc2f4f9a8786d0d15f84473d42a074cc48
MD5 18f0281bb67b398ff0102983b1beda2a
BLAKE2b-256 2d751be45479f6f3a7ea5e0fde6016ea77d94d5957eb72ec22f954077080e55b

See more details on using hashes here.

File details

Details for the file pymef-1.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f1cce5fbc73d9f75e6ca8eb2568cb5a0b791ee4b1ac226709f30f0e569f0a102
MD5 5e9884144f743d48c10fae72a5d047f7
BLAKE2b-256 3f3cf6e64b5f75d307b0da5425b9692f567ee60bd4b9fc37f9f8c569f20caa9e

See more details on using hashes here.

File details

Details for the file pymef-1.4.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dd91dd96e3467f73dfbc70fe451001b4733d04de8872ffe2bd0c17ba5e506b72
MD5 29482721608daf4dc22b58dd90c37cae
BLAKE2b-256 18c1feddc7333e56a7084b5f4b519d38b61f97c47e3cb7cb917bbd565ed9e4dc

See more details on using hashes here.

File details

Details for the file pymef-1.4.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pymef-1.4.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 129.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for pymef-1.4.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 419f3d3224cb4a8805646c0c0c1ede504ec446eec031331824bdb069582282bf
MD5 0c12aae52ff9853b0a8cfc1c52c8706e
BLAKE2b-256 25c2bd2af65258dfbfc79b432588de22f82607d410a2bc589bdce118c8c588ac

See more details on using hashes here.

File details

Details for the file pymef-1.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 69c7737ea9f83fb0211742eb6a1c2d4a5c80e4be5f9648656c51cf2473415c20
MD5 b57ee5baf1745e65f026858f9bb1a4bd
BLAKE2b-256 731b05cb0a670ededd79bfb7a935faa9c8e8c4c0a3cfe59a0943ecf513827991

See more details on using hashes here.

File details

Details for the file pymef-1.4.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6aae66ad8367b263e7f89abc36440573aa198992ac082f4c3fc3bb4c3580b020
MD5 035aca8c11c7e0893cffb7466610f799
BLAKE2b-256 73a7a51e5ab31793c715d2030bb05e657d4490e3891186310ab647986315a87d

See more details on using hashes here.

File details

Details for the file pymef-1.4.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pymef-1.4.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 129.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for pymef-1.4.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 11e6cb65fd265c2d182b715477fc4b4d999d31ec3096a475b178f2a5e41b3578
MD5 b697f97193489afd017aa92121886fab
BLAKE2b-256 6b909081bc5037c96d2394ed7789577ddadd79e41e192fe91af76ae1dc2514d4

See more details on using hashes here.

File details

Details for the file pymef-1.4.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c469b0b977146126eb79ca96ab65768ec328b4b97931a2ab96e5d6fdaa474857
MD5 b939b391b9f9ff28e77fc55598f75dd6
BLAKE2b-256 b4afe0a4113f5fd28a9684e2687ca8322bcdb5290124cd782fd6f1c20134d749

See more details on using hashes here.

File details

Details for the file pymef-1.4.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cea3ec284d0d9cca1c022cf60b4d5e4766b46ad928c3b290aecb1839bee7bff9
MD5 07e3476bc50655a30839f00d41048c74
BLAKE2b-256 6cd08c9db57e544cc8446a1a0be3896c0e41e748767aa582bf44734587080f7b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page