Skip to main content

Pymef is a wrapper library for Multiscale Electrophysiology Format developed by MSEL laboratory.

Project description

Tests Documentation Status

Pymef

Pymef is a wrapper library for Multiscale Electrophysiology Format developed by MSEL laboratory.

Currently available for all major distributions (Linux, Mac OS, Windows). Only python 3 is supported.

Mef v 3.0 basic features

  • Support for parallelisation of signal processing
  • Data compression
  • Data encryption
  • Real-time read/write, failure when writing file leaves intact valid files
  • CRC functionality to detect data corruption
  • Support for time discontinuities
  • Support for time series and video channels

Wrapper features

  • MEF3 files write/read
  • Convenience functions to easily read data and metadata for multiple channels

Installation

To install please use:

pip install pymef

To install from source:

python setup.py install

Usage

from pymef.mef_session import MefSession

session_path = '/path/to/session.mefd'
password     = 'mef_password'          // leave blank if no password

# read session metadata
ms = MefSession(session_path, password)

# read data of a single channel from beginning to end
data = ms.read_ts_channels_sample('Ch01', [[None, None]])

# read data of multiple channels from beginning to end
data = ms.read_ts_channels_sample(['Ch01', 'Ch05'], [[None, None]])

Documentation

The MEF3 specification can be found here. The PyMef documentation can be found here.

Support

Please report problems to jan.cimbalnik@fnusa.cz.

License

Pymef is licensed under the Apache software license. See LICENSE.txt for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pymef-1.4.3-cp311-cp311-win_amd64.whl (133.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

pymef-1.4.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (377.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pymef-1.4.3-cp311-cp311-macosx_10_9_x86_64.whl (170.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pymef-1.4.3-cp310-cp310-win_amd64.whl (133.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

pymef-1.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (375.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pymef-1.4.3-cp310-cp310-macosx_10_9_x86_64.whl (170.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pymef-1.4.3-cp39-cp39-win_amd64.whl (133.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

pymef-1.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (374.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pymef-1.4.3-cp39-cp39-macosx_10_9_x86_64.whl (170.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pymef-1.4.3-cp38-cp38-win_amd64.whl (133.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

pymef-1.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (381.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pymef-1.4.3-cp38-cp38-macosx_10_9_x86_64.whl (170.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pymef-1.4.3-cp37-cp37m-win_amd64.whl (132.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

pymef-1.4.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (369.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pymef-1.4.3-cp37-cp37m-macosx_10_9_x86_64.whl (170.2 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pymef-1.4.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pymef-1.4.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 133.3 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for pymef-1.4.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6674e821f831f335ff059a8f50da88e795a653ad1de724fd1c4ac10456ef6700
MD5 9abd3281526183c1c816724d308b45a7
BLAKE2b-256 d5a4fc5619220a2912f6ec1763a1810a9eda77c7d2bfba751717581e70b85e40

See more details on using hashes here.

File details

Details for the file pymef-1.4.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c50ea4a3abe21103c38e8fa3cd33a7aa36e3e115d71d9c2550708dad37b445a4
MD5 6caf4784c30cb7610b7ac301e8dd3f58
BLAKE2b-256 1012914e5b013402d494bb36f7184194138d48a45236481d3df71f4a5b4d2527

See more details on using hashes here.

File details

Details for the file pymef-1.4.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ed6db13d294b851331b95a1019c6eed2780c5295e30bc01fef5e61ae08acdbfa
MD5 5e179f11bc4fec0653838e1337d120f9
BLAKE2b-256 4ca3f0267aa190c31a24a25b8ab43f30c3f19b1d66caa1d99704cec2c05d47b0

See more details on using hashes here.

File details

Details for the file pymef-1.4.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pymef-1.4.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 133.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for pymef-1.4.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3a59878ac93a0575e59c244a570719c2f43cb6e9ae65cd7a22e9dda80dd5e015
MD5 2629c87b41efb907a8bd23a61ce76846
BLAKE2b-256 2d7d898fa9079988f36da2783257ee907fc0b101dd95393b92dd809cd7f642a5

See more details on using hashes here.

File details

Details for the file pymef-1.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b911494c2abae4502c46f4760744c2f8b9a74202b0b4e5c87db1c29919d7209a
MD5 ed9da6e8d364aabcb49266233a9c0764
BLAKE2b-256 65cec858c4358d81713022b29d5d3b52294a642f5dd1c35a3009b35a7db3762f

See more details on using hashes here.

File details

Details for the file pymef-1.4.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 148faf665913d0f4e823bb636b7bf5a64fe057fe172aaf1599a5a68320a82cbc
MD5 f3c271a46139d694c1ce05b92464468b
BLAKE2b-256 a866c9d0732794401186bded6beaf87c8be3059517bf3c24634729de993b9fd7

See more details on using hashes here.

File details

Details for the file pymef-1.4.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pymef-1.4.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 133.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for pymef-1.4.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 dc253fc9534b8b8faad3ea4170f8dd73e8060d916dc4822c2690ff261162a794
MD5 4b927e1a0e795049029122951f5266b9
BLAKE2b-256 3f78ecbf5d4a1b15945535970ac0866c201c3d0ef6f9b4e89b5f605f165249bf

See more details on using hashes here.

File details

Details for the file pymef-1.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b898afc2abccf2b1e748531c67909a0bd298161a2c96ff3252e8f744675f9e11
MD5 8b743c48074dd87da47771ac9d8dfa1c
BLAKE2b-256 2e97efeb9fcad0f67ed9b21b9ebd7901042046fe556bff982de9584c9dec1ee8

See more details on using hashes here.

File details

Details for the file pymef-1.4.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3a1685010b2ede3afe6498fc21fa2d706046164e5374bf712db74609eb66b5a3
MD5 e3ec8f603f3f0e164eda9957264d69ac
BLAKE2b-256 bd59cc4ff1ff4c79eccb000f8e15a20f4f20e3b56a4e6416f38f51ffe069e4d7

See more details on using hashes here.

File details

Details for the file pymef-1.4.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pymef-1.4.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 133.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for pymef-1.4.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9dcd4be397232d6d2e9b10045bf96b8136b620467e1115f0de53aa3db2084995
MD5 5457aea57caf1c8659e2eed8ddb6d4cc
BLAKE2b-256 11d959c6354db7c1185b17f62e8edf6baeb089b99ba41a651f89bc1ad0f5b8bc

See more details on using hashes here.

File details

Details for the file pymef-1.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 08b5f6f4f1dfd0b8692f470609649def7f1ab04393896593c45cf4f1eb6d6d42
MD5 8be3c757cd4bee1d387addb1566f3918
BLAKE2b-256 cb1cf71dbeb54dac9309b31e52c3736caa6b2f1dbd9f615101c4a1501fe83e94

See more details on using hashes here.

File details

Details for the file pymef-1.4.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 286093ff333bf16ca693ffc724bb9d2d82c1bb84a1d777386bcb8cebbc0eb8d1
MD5 05fcfe8cee68f02aeec6c0f1a50e520d
BLAKE2b-256 376058a915a63939836eff9febb6f0f261baef874eee596cd4d3537a746cdec7

See more details on using hashes here.

File details

Details for the file pymef-1.4.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pymef-1.4.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 132.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for pymef-1.4.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3e7365704e1623657d9ef022a6e1acba333e7d501beb3d63166350c198aef91f
MD5 8581779145800e1cfd00b1fed08ff908
BLAKE2b-256 5f539a432703e7bdd36608c5d8a9cabfe8accb70483563fdb2463bbfb33c0210

See more details on using hashes here.

File details

Details for the file pymef-1.4.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a106e19b7712dac28a2052287e81c694691a7fb54c83d4c1cbb8543090ebb63
MD5 b4f204fe8a6d1667ce95e600ceed92f7
BLAKE2b-256 62559a254fee778c371a79cd449a450e0316f021159076b38ea37b92c93aa43a

See more details on using hashes here.

File details

Details for the file pymef-1.4.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymef-1.4.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5fde452d681c0f68f14b5d92aecec26e6abaa087ed315d1dc657ed1a1acc154c
MD5 95bf5516bb53c8d85f25d0a53d48b9de
BLAKE2b-256 031d69bf57d286cb5836e08e18b783c6ee11805e99d7a33dd02bc8c39b7666be

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page