A very fast in-memory database with export to sqlite written purely in python
Project description
pymemdb
will soon be available with
pip install pymemdb
Description
Very simple RDMBS that is supposed to serve as a drop-in replacement for a conventional DB during build-up. It is very fast, completely written in python und relies heavily on dictionaries. It features a to_sqlite
export method - more DBs will follow.
Usage
Insert into a table
from pymemdb import Table
table = Table()
row1 = dict(firstname="John", lastname="Smith")
row2 = dict(firstname="Jane", lastname="Smith")
row3 = dict(firstname="John", lastname="Doe")
for row in [row1, row2, row3]:
table.insert(row)
iterate over the entire table
print(list(table.all()))
[{'id': 0, 'firstname': 'John', 'lastname': 'Smith'},
{'id': 1, 'firstname': 'Jane', 'lastname': 'Smith'},
{'id': 2, 'firstname': 'John', 'lastname': 'Doe'}]
update rows
table.update(where={"firstname": "Jane"}, firstname="Joanne")
print(list(table.all()))
[{'id': 0, 'firstname': 'John', 'lastname': 'Smith'},
{'id': 1, 'firstname': 'Joanne', 'lastname': 'Smith'},
{'id': 2, 'firstname': 'John', 'lastname': 'Doe'}]
search for rows
print(list(table.find(firstname="John")))
[{'id': 0, 'firstname': 'John', 'lastname': 'Smith'},
{'id': 2, 'firstname': 'John', 'lastname': 'Doe'}]
search for values in iterable
print(list(table.find(firstname=["John", "Joanne"])))
[{'id': 0, 'firstname': 'John', 'lastname': 'Smith'},
{'id': 1, 'firstname': 'Joanne', 'lastname': 'Smith'},
{'id': 2, 'firstname': 'John', 'lastname': 'Doe'}]
delete rows
table.delete(firstname="John", lastname="Smith")
print(list(table.all()))
[{'id': 1, 'firstname': 'Joanne', 'lastname': 'Smith'},
{'id': 2, 'firstname': 'John', 'lastname': 'Doe'}]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pymemdb-1.4.3.tar.gz
(11.4 kB
view details)
Built Distribution
File details
Details for the file pymemdb-1.4.3.tar.gz
.
File metadata
- Download URL: pymemdb-1.4.3.tar.gz
- Upload date:
- Size: 11.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: python-requests/2.24.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5320351d3a2da16cc7f7b27a0844bdbbbae0ea40f7bbe57a108528ce49d93b80 |
|
MD5 | f2a9684a7128805fe8009b6e5d0c85a6 |
|
BLAKE2b-256 | 253758f2d772c1958eddedca136bd88fa2795bea71eb87ba2f9d741b774de3a1 |
File details
Details for the file pymemdb-1.4.3-py3-none-any.whl
.
File metadata
- Download URL: pymemdb-1.4.3-py3-none-any.whl
- Upload date:
- Size: 7.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: python-requests/2.24.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | df7e8b17cea4291624109e884f624b04e909f0bd33b9397c2fceac35c89dce53 |
|
MD5 | f21cf81f0a27671cfb151ca26d60b366 |
|
BLAKE2b-256 | 105241a9100f0d55a21eacfcfc10c5d00c29e58e94c4996e41cc43bdd4098fb4 |