Skip to main content

Cython bindings and Python interface to the MEME suite.

Project description

🐍Ⓜ️ PyMEMEsuite Stars

Cython bindings and Python interface to the MEME suite, a collection of tools for the analysis of sequence motifs.

Actions Coverage PyPI Wheel Python Versions Python Implementations License Source GitHub issues Docs Changelog Downloads

🗺️ Overview

The MEME suite is a collection of tools used for discovery and analysis of biological sequence motifs.

pymemesuite is a Python module, implemented using the Cython language, that provides bindings to the MEME suite. It directly interacts with the MEME internals, which has the following advantages over CLI wrappers:

  • single dependency: If your software or your analysis pipeline is distributed as a Python package, you can add pymemesuite as a dependency to your project, and stop worrying about the MEME binaries being properly setup on the end-user machine.
  • no intermediate files: Everything happens in memory, in Python objects you have control on, making it easier to pass your inputs to MEME without needing to write them to a temporary file. Output retrieval is also done in memory.

This library is still a work-in-progress, and in an experimental stage, but it should already pack enough features to run biological analyses or workflows involving FIMO.

🔧 Installing

pymemesuite can be installed from PyPI, which hosts some pre-built CPython wheels for x86-64 Linux, as well as the code required to compile from source with Cython:

$ pip install pymemesuite

💡 Example

Use MotifFile to load a motif from a MEME motif file, and display the consensus motif sequence followed by the letter frequencies:

from pymemesuite.common import MotifFile

with MotifFile("tests/data/fimo/prodoric_mx000001_meme.txt") as motif_file:
    motif = motif_file.read()

print(motif.name.decode())
print(motif.consensus)

for row in motif.frequencies:
    print(" ".join(f'{freq:.2f}' for freq in row))

Then use FIMO to find occurences of this particular motif in a collection of sequences, and show coordinates of matches:

import Bio.SeqIO
from pymemesuite.common import Sequence
from pymemesuite.fimo import FIMO

sequences = [
    Sequence(str(record.seq), name=record.id.encode())
    for record in Bio.SeqIO.parse("tests/data/fimo/mibig-genes.fna", "fasta")
]

fimo = FIMO(both_strands=False)
pattern = fimo.score_motif(motif, sequences, motif_file.background)

for m in pattern.matched_elements:
    print(
        m.source.accession.decode(),
        m.start,
        m.stop,
        m.strand,
        m.score,
        m.pvalue,
        m.qvalue
    )

You should then get a single matched element on the forward strand:

BGC0002035.1_3425_15590 6700 6714 + 9.328571428571422 1.1024163606971822e-05 0.6174858127445146

📋 Features

🧶 Thread-safety

FIMO objects are thread-safe, and the FIMO.score_motif and FIMO.score_pssm methods are re-entrant. This means you can search occurences of several motifs in parallel with a ThreadPool and a single FIMO instance:

from multiprocessing.pool import ThreadPool
from pymemesuite.fimo import FIMO

fimo = FIMO()
with ThreadPool() as pool:
    patterns = pool.map(
        lambda motif: fimo.score_motif(motif, sequences, background),
        motifs
    )

📌 Roadmap

  • error management: Make sure to catch exceptions raised by the MEME core without exiting forcefully.
  • transfac: Support for TRANSFAC motifs in addition to MEME motifs.
  • meme: Motif discovery through enrichment analysis between two collections of sequences.

💭 Feedback

⚠️ Issue Tracker

Found a bug ? Have an enhancement request ? Head over to the GitHub issue tracker if you need to report or ask something. If you are filing in on a bug, please include as much information as you can about the issue, and try to recreate the same bug in a simple, easily reproducible situation.

🏗️ Contributing

Contributions are more than welcome! See CONTRIBUTING.md for more details.

⚖️ License

This library is provided under the MIT License. The MEME suite code is available under an academic license which allows distribution and non-commercial usage. See vendor/meme/COPYING for more information.

Test sequence data were obtained from MIBiG and are distributed under the CC BY 4.0 license. Test motifs were obtained from PRODORIC and are distributed under the CC BY-NC 4.0 license.

This project is in no way affiliated, sponsored, or otherwise endorsed by the original MEME suite authors. It was developed by Martin Larralde during his PhD project at the European Molecular Biology Laboratory in the Zeller team.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymemesuite-0.1.0a3.tar.gz (3.6 MB view details)

Uploaded Source

Built Distributions

pymemesuite-0.1.0a3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pymemesuite-0.1.0a3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

pymemesuite-0.1.0a3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pymemesuite-0.1.0a3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pymemesuite-0.1.0a3-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

pymemesuite-0.1.0a3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pymemesuite-0.1.0a3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pymemesuite-0.1.0a3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pymemesuite-0.1.0a3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pymemesuite-0.1.0a3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pymemesuite-0.1.0a3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pymemesuite-0.1.0a3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pymemesuite-0.1.0a3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pymemesuite-0.1.0a3-cp312-cp312-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pymemesuite-0.1.0a3-cp312-cp312-macosx_10_9_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pymemesuite-0.1.0a3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pymemesuite-0.1.0a3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pymemesuite-0.1.0a3-cp311-cp311-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pymemesuite-0.1.0a3-cp311-cp311-macosx_10_9_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pymemesuite-0.1.0a3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pymemesuite-0.1.0a3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pymemesuite-0.1.0a3-cp310-cp310-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pymemesuite-0.1.0a3-cp310-cp310-macosx_10_9_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pymemesuite-0.1.0a3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pymemesuite-0.1.0a3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pymemesuite-0.1.0a3-cp39-cp39-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pymemesuite-0.1.0a3-cp39-cp39-macosx_10_9_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pymemesuite-0.1.0a3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pymemesuite-0.1.0a3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pymemesuite-0.1.0a3-cp38-cp38-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pymemesuite-0.1.0a3-cp38-cp38-macosx_10_9_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pymemesuite-0.1.0a3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pymemesuite-0.1.0a3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pymemesuite-0.1.0a3-cp37-cp37m-macosx_10_9_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pymemesuite-0.1.0a3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pymemesuite-0.1.0a3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pymemesuite-0.1.0a3-cp36-cp36m-macosx_10_9_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pymemesuite-0.1.0a3.tar.gz.

File metadata

  • Download URL: pymemesuite-0.1.0a3.tar.gz
  • Upload date:
  • Size: 3.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for pymemesuite-0.1.0a3.tar.gz
Algorithm Hash digest
SHA256 b6853f413d84a80c08300ab1f006055ebfcbac0f70c5b832eeefffa183f9878e
MD5 c2ceb11053044b5487500021ec559544
BLAKE2b-256 6c08e1ad37aa6e5abbdece2038868164fa3f90802a9c0ce6d3a65c18a7a4b858

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2e06bf478fb3466f7d01af16d3247abc698fccea7e0afcde43bfb9e2c0c551da
MD5 f3c45185f5bcdcc3594ebee762e7f48f
BLAKE2b-256 93a05bde3aff15bb80b4f71f97cdc3645278c6586142beca6856154e22cc848c

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f7cf3355d05f6cee7cc8a69e41e3db6ab461cbcb919d0dc35bd54b6ebcc35c5e
MD5 e77c044631fd1e6c585e004e10ca8db4
BLAKE2b-256 c1245876989d45d357eb6ad3b7b6d3d16bc36ce3ffb476100d35ec0ab6a7cf55

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 8a387ea63af5d413417fd328023b170ce138a028c5a826b75fb3fbb16351565a
MD5 2169c525b4e5c99439a03650bbd3a3c8
BLAKE2b-256 5a12eabb9ddab04697aab137defacce850031da5b7f903044161e829cc2f12e6

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 26a358870e7a9ad138de81a5ba5410ad94c4a854ede6bc4430ed70bf60fe6350
MD5 002f9dab84fb81ffb5d7c2f6d85262c9
BLAKE2b-256 9505f47fc9da513da9064f65c7fff642013d00b90ea1811537acfc456f9d55e5

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9b87e5ac98e1267155b5c92724aea148eece314174210a4dc24bee104dff5042
MD5 c696c4f387289328f0cab4640e7a3539
BLAKE2b-256 d0feeb82315b907d337e35b36d022890692c42e73792786e7df6ffed8823bcff

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 9cbf4979dd49ad6e2361cc72ca6db3906f3a4c9f989e0a8632992c850e91804f
MD5 0e54e764de5b7ec0edaf260a512b9501
BLAKE2b-256 c9e994c1d92375eba511aaa867b4cb52564537db623086c189d6073d38461139

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9894139271fa8d9a683e22c5ddd5caa50514efe61a32f27852a362dad3031a4a
MD5 3bf1f4af8fff203d33d5ecf8500166f0
BLAKE2b-256 7a11e320f26ab7bbc6bac9f795eaf4c81f42bdfb67f615f12efa2f7deb63a0cf

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 852afbd116392491ecfee13aaa79ed21804b2811ef0fde80ae0d25b04733eaa3
MD5 8d059a26b73829dfcebb846ba658f5f0
BLAKE2b-256 328bbcb4cc3fbae50e4db59998319d297a7d13e5578641b3067844c496eec456

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c038210d06ca99ec60cdb8dc37bd7ff36e5100f5be1b1bde2588a226cb1269b0
MD5 03f4504ae9a4ad46d5cabe6aef70ad34
BLAKE2b-256 881ea72e2170d9ffca66b6ce061433ca5b59e264a81a34893f9383702570c98e

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8a7bba3eb6d7fb8d372df811fe35579fdc48d250ac3a7e97d5457311f2405770
MD5 d353d23e46be599cc636655c39e8481a
BLAKE2b-256 2573a8f956c814f15d54977578b2798416c3e6fd21e6b673a0c511f9a1a6c9a3

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c0f387dd434d259c73a9e9c386754130b3aecdf5a3453789b3176b9be1b521dd
MD5 67a757883e9ab000b0812d14f1840888
BLAKE2b-256 d7154ed88ae46b0796ef8f84c7d7e5956b00b0a8d5097c075fce90e9a9c43928

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 51ea51cfa0e8cdfd7f6aa59aaee8079f95bb5db6ba2bf45ac46fed8223daec82
MD5 bb54690c5701e18bf168b02106516b59
BLAKE2b-256 a8f4fb81f52b8c899b26fe9cbc7d671f847e8a67df514256be9273de148d3359

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7ac991b9ab7d2173e040a32949ffcf06b5bf334a729a044a410a15910781a6b9
MD5 ecea6ba4beb0a92a06bcc5bb75ba1eaa
BLAKE2b-256 e2ff229354206e044a88a69ce86333b264b6893dfff4f238e2562a35464c2fb9

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 990ed8cca7946f62d36d7a035c6fb674a1d8fa05a9fd3a66ed6264638377add1
MD5 7c757bb9ef3caf0abcba4ade7c290e83
BLAKE2b-256 38b51af0692e319094211640401ac572c447a3b41cf9f9c642e399ce6068892f

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e08ec0dea75d0c695fea34cbbc399ade7d289f2f878c37a6db191c59c8c85629
MD5 f797d7c22bf1e61b0093e43e26a0ed87
BLAKE2b-256 c187c61ed62684ad7a4177dfd3278a6299e215c6d0595d447afa8881fcd976ef

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c12cecd5c0bbba0f6fe51655aa7914f93ac76dc6ac9d43b288e22f6f3fae8104
MD5 c2c9c5ef55f28018b50b0bce17d2be5d
BLAKE2b-256 f6a52c9b7eb90eb3b5d59b7b27c8a830f2bfd377b86fcf7cb8b23b83a4dc33f3

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6752a95d0cdcb9011b0a990513a75cee371a369ac702ee7a5eddc1ad0e6f001c
MD5 675ea7670c5f55ea1ab2b9696a8784a5
BLAKE2b-256 181291318b19cbc878c10b98f771a7421a3ed070789e72db9f350e025f68168c

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 52c667d2c8d1d946e94f5fedbcabe9b944023c0bed5ec0e800535028fb898abd
MD5 88796781bf44b1335f2905832728f12b
BLAKE2b-256 3b570bcc2ab7275b11ff7b171ee93b88f12d6c69d7921ef87db2cc58584dceb4

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 540c51589036b1ce029e62aab2dd70cfd43edc26b49d4da9679969d6d9ddb1db
MD5 142ce5c3bfec3fb950b4f18d1d82327c
BLAKE2b-256 11c183dc33a4a7a10b2aec08a9878d5f11cde4f7f3993421a817ee10ecda93e9

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 07b4ed2f20f2d1f4f7e45a51e376a5db66d5429d96f391186416fb2a8e102780
MD5 03bd576f97d9d2e7860cc846afb1cf65
BLAKE2b-256 7ad9f7af9cdc6c21c6d877fa5d0245e2a0933da1849ad1cad336cc75e9f89b6b

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9fbee79f5e3a6316329e65f7af0c35c77d6185807bea8741d246a42d007414b5
MD5 84b9273fd72f22cec992f0557d2a8f17
BLAKE2b-256 bb98a2760d04dbe664f637af5997566af4681b12d40157890c91d2ae718490db

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 84b1387141ce524f88a688b377d1a9b9e15c6daf544c2a3d17e63a2aa79693f9
MD5 cd77a99b4d3e68b0199b9527ca8ee772
BLAKE2b-256 f25fefd11e6325f7edf6d0c98ad4351f8f51f812a05ea113131f41f420e58359

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9eebe40869d0890a810511a0c48ab8a89c7c1adcf8f0716bf336be8f06a1227c
MD5 f073bc9ae3ace58744e2fef9d7095e91
BLAKE2b-256 a583f8a80c1f82c2b4e0e25fed8ddc07cdb1c121f549fe5588f848c256bd2825

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 285cc80601139a995a80100b0a2bafac564f5b6280a19576df89927767c373b9
MD5 9079dfc3b278d1065419bd9efdca8323
BLAKE2b-256 f560d5932f26fbfd0c31ef5e42ffb614607605e3b3f4f4d2dacf9c9e0b629ee2

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6117c71fcaa1653d24c2bf32973484a6922519e21a25e68ff215c5bfec588647
MD5 39f2cd08e086816bdd948dfa76e7a675
BLAKE2b-256 7f241b63a73e2f2fe9212d11c7db48c596fb1ed9ebfead54759b8e8e6e3ccd6d

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e7539edf757b62815888564f7ac66bb1a0785545f4f3bbfb9f8968622f5ae209
MD5 a46b345736c1fe57c41c106eb78eb3a0
BLAKE2b-256 5ab86d707bb3c63c6b6a5e3eae3fac67ed4593a06a512d3ad413e208e45f84af

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fe37a232757050bada47fcfda35e4e3ad175db16f0fb0d8d5cf0b5f32ee59ab1
MD5 1a1dd6b5340eb6b7dd896605fc87e2e7
BLAKE2b-256 00debf8785ea086cf491b9c8ce756bb6590daf0d79f212ec447fe882f85608fa

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f15622b805081a8d84d3924cd855594b97b8a50b798e8af574e124279b8f3860
MD5 97be1925132c29100009f9a94ff1c91c
BLAKE2b-256 baeee5b0d85ec1888a856ac9531ba92035e526dc2eef558fe99f0c71fb55f39c

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 92a31313e6b5f3647a4b377372ab03fb24ed3a4872d011641b23e261674799c1
MD5 212b1492dab70e781059212447359f57
BLAKE2b-256 575e11dee2654d20e47910859f96ccb3064f7ee3a133cb1ddf244b312d706f91

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2b8fa1b988c33cb6b78adefda02fa64734bb30e668c0d44f243913fcc12e28fd
MD5 e6faa072a2f1f5eef46d6bcb3c901120
BLAKE2b-256 d0b77048971ce2e7fddf9d36bad03cbb9251c268e1f3d4d3167f398d14d2c1d8

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6e84ad29b96e2e33e2b9982915f057bcdce673d2e31eedf4ceb6bf37ddb7c68b
MD5 6f1a30e8839a1179cb37c9b7a46eb74f
BLAKE2b-256 fef496a7e979d2d3cc9c3afbb51421a68f49be063ca299980808fed6ca1a4a0a

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6b916938badf1c77e4d4040b01d134e0489c69416fdb86d1749cb0a126bd6fb3
MD5 8b8104627b83d6fb46f93632260f583d
BLAKE2b-256 ca8fe4343b40a301a755ecdb36324e128aab87d82954b50649eeec54071513d1

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cad2a553cc17095ecf5e505fbbe4a12dff8bc15cbdbae643af99414006f3402f
MD5 fe1e2a1b5ffeb37190557486ee25718c
BLAKE2b-256 9aaca949ec9f2e63fe950918510576c5b5d1cffebcbdf15cfa6448c03c203777

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9bc15045f678aff1983ff1e58c3937b2553bc29d0cf2b3216fac355dfe8cbdd7
MD5 73333acdd4d81e02e29e246ec75c98da
BLAKE2b-256 2eaa0d0a7ef0e3b254b0973b2160b5d9c1c9937e6c2898e224697087da130f9e

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0363e7ca425a130e5f05cccb0ca45a9a16e69de4f7f1402286ae0f9018450386
MD5 5ce1cb5761aa12b8b3203878a627e0bc
BLAKE2b-256 1f97cd3996c1c02fa358a653125dca8d966c1d7032346c9942cf539863bc3873

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 21be85f89917ecca698d0cf25baf41576d23883d894702dd0f92637d06e0b92a
MD5 f93ebcf4f2ebf8db5598fede303b3103
BLAKE2b-256 1fdb61d85b6a1cf18c3dcbaa4b2e7605d4882e20a00a7e1ac1a2e1f74c42e113

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d77b8f0c885334647518735fed42568372b8912548bbd08c5f1ec974bc9b7fe6
MD5 54b2e24422f7b578125c41e95f3969a5
BLAKE2b-256 961ab579c4270d5d74073a81c3af78784df702ddab8da000fc120afb18be1b1f

See more details on using hashes here.

File details

Details for the file pymemesuite-0.1.0a3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pymemesuite-0.1.0a3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9cec8278210a4ce2498fb459d82aac64ad2cf4607138e5885199a329c1dba90c
MD5 349d49b88e308dedf843752cf5b96b09
BLAKE2b-256 88b67764a504e948aa3cdd1903eae1603b99c31e300044272ef180ea60147ac1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page