Python Sdk for Milvus-Distributed
Project description
Milvus Python SDK
Python SDK for Milvus. To contribute code to this project, please read our contribution guidelines first.
For detailed SDK documentation, refer to API Documentation.
- New features
- Get started
- Basic operations
- Create/Drop collections
- Create/Drop partitions in a collection
- Create/Drop indexes in a collection
- Insert/Delete vectors in collections/partitions
- Flush data in one or multiple collections to disk
- Compact all segments in a collection
- Search entities in collections/partitions
- Disconnect from the Milvus server
- FAQ
New features
-
remove
get_index_info
, the index info can be obtained byget_collection_info
-
add
get_collection_stats
, more detailed collection stats.
Get started
Prerequisites
pymilvus only supports Python 3.5 or higher.
Install pymilvus
You can install pymilvus via pip
or pip3
for Python3:
$ pip3 install pymilvus
The following collection shows Milvus versions and recommended pymilvus versions:
Milvus version | Recommended pymilvus version |
---|---|
0.3.0 | 0.1.13 |
0.3.1 | 0.1.25 |
0.4.0 | 0.2.2 |
0.5.0 | 0.2.3 |
0.5.1 | 0.2.3 |
0.5.2 | 0.2.3 |
0.5.3 | 0.2.5 |
0.6.0 | 0.2.6, 0.2.7 |
0.7.0 | 0.2.8 |
0.7.1 | 0.2.9 |
0.8.0 | 0.2.10 |
0.9.0 | 0.2.11 |
0.9.1 | 0.2.12 |
0.10.0 | 0.2.13 |
>=0.10.1, <0.11.0 | 0.2.14 |
0.11.0 | 0.3.0 |
You can install a specific version of pymilvus by:
$ pip install pymilvus==0.3.0
You can upgrade pymilvus
to the latest version by:
$ pip install --upgrade pymilvus
Examples
Refer to examples for more example programs.
Basic operations
Connect to the Milvus server
- Import pymilvus.
# Import pymilvus
>>> from milvus import Milvus, DataType
- Create a client to Milvus server using one of the following methods:
# Connect to Milvus server
>>> client = Milvus(host='localhost', port='19530')
Note: In the above code, default values are used for
host
andport
parameters. Feel free to change them to the IP address and port you set for Milvus server.
>>> client = Milvus(uri='tcp://localhost:19530')
Create/Drop collections
Create a collection
- Prepare collection parameters.
# create collection name
>>> collection_name = 'test01'
# create a collection of 4 fields, fields A, B and C are int type fields
# and Vec is a float vector field.
# segment_row_limit is default as 524288 if not specified
>>> collection_param = {
... "fields": [
... {"name": "A", "type": DataType.INT32},
... {"name": "B", "type": DataType.INT32},
... {"name": "C", "type": DataType.INT64},
... {"name": "Vec", "type": DataType.FLOAT_VECTOR, "params": {"dim": 128}}
... ],
... "segment_row_limit": 4096,
... "auto_id": True
... }
- Create collection
test01
with dimension of 128, size of the data file for Milvus to automatically create indexes as 4096. Ifmetric_type
isn't offered, default metric type is Euclidean distance (L2). ForFLOAT_VECTOR
field,dim
is a must.
# Create a collection
>>> client.create_collection(collection_name, collection_param)
- You can check collection info by
get_collection_info
>>> info = client.get_collection_info('test01')
>>> info
{'fields': [
{'name': 'A', 'type': <DataType.INT32: 4>, 'params': {}, 'indexes': [{}]},
{'name': 'C', 'type': <DataType.INT64: 5>, 'params': {}, 'indexes': [{}]},
{'name': 'B', 'type': <DataType.INT32: 4>, 'params': {}, 'indexes': [{}]},
{'name': 'Vec', 'type': <DataType.FLOAT_VECTOR: 101>, 'params': {'dim': 128},
'indexes': [{}]}
],
'auto_id': True,
'segment_row_limit': 4096
}
You can see from the info, there is an auto_id
option in collection info, and its True
by default.
So if you have your own ids and don't want auto generated ids, you may want to set auto_id
to False
while creating collections.
Drop a collection
# Drop collection
>>> status = client.drop_collection('test01')
>>> status
Status(code=0, message='OK')
Create/Drop partitions in a collection
Create a partition
You can split collections into partitions by partition tags for improved search performance.
# Create partition
>>> client.create_partition(collection_name='test01', partition_tag='tag01')
Use list_partitions()
to verify whether the partition is created.
# Show partitions
>>> partitions = client.list_partitions(collection_name='test01')
>>> partitions
['_default', 'tag01']
Drop a partition
# Drop partitions
>>> status = client.drop_partition(collection_name='test01', partition_tag='tag01')
Status(code=0, message='OK')
Create/Drop indexes in a collection
Create an index
Note: In production, it is recommended to create indexes before inserting vectors into the collection. Index is automatically built when vectors are being imported. However, you need to create the same index again after the vector insertion process is completed because some data files may not meet the
index_file_size
and index will not be automatically built for these data files.
- Create an index of
IVF_FLAT
withnlist = 100
for the collection.
# Create index
>>> status = client.create_index('test01', "Vec", {"index_type": "IVF_FLAT", "metric_type": "L2", "params": {"nlist": 100}})
>>> status
Status(code=0, message='OK')
- You can check index info by
get_collection_info
>>> info = client.get_collection_info('test01')
>>> info
{'fields': [
{'name': 'A', 'type': <DataType.INT32: 4>, 'params': {}, 'indexes': [{}]},
{'name': 'C', 'type': <DataType.INT64: 5>, 'params': {}, 'indexes': [{}]},
{'name': 'B', 'type': <DataType.INT32: 4>, 'params': {}, 'indexes': [{}]},
{'name': 'Vec',
'type': <DataType.FLOAT_VECTOR: 101>,
'params': {'dim': 128, 'metric_type': 'L2'},
'indexes': [{'index_type': 'IVF_FLAT', 'metric_type': 'L2', 'params': {'nlist': 100}}]}],
'auto_id': True,
'segment_row_limit': 4096
}
Drop an index
# Drop an index of a specific field "Vec"
>>> status = client.drop_index('test01', "Vec")
Status(code=0, message='OK')
Insert/Delete entities in collections/partitions
Insert entities in a collection
- Generate 5000 vectors of 128 dimension and an integer list.
>>> import random
>>> num = 5000
# Generate a list of integer.
>>> list_of_int = [random.randint(0, 255) for _ in range(num)]
# Generate 20 vectors of 128 dimension
>>> vectors = [[random.random() for _ in range(128)] for _ in range(num)]
- Create hybrid entities
>>> hybrid_entities = [
{"name": "A", "values": list_of_int, "type": DataType.INT32},
{"name": "B", "values": list_of_int, "type": DataType.INT32},
{"name": "C", "values": list_of_int, "type": DataType.INT64},
{"name": "Vec", "values": vectors, "type":DataType.FLOAT_VECTOR}
]
- Insert the hybrid entities.
If you create a new collection with auto_id = True
, Milvus automatically generates IDs for the vectors.
# Insert vectors
>>> ids = client.insert('test01', hybrid_entities)
If you create a new collection with auto_id = False
, you have to provide user-defined vector ids:
# Generate fake custom ids
>>> vector_ids = [id for id in range(num)]
# Insert to the non-auto-id collection
>>> ids = client.insert('test01', hybrid_entities, ids=vector_ids)
The examples below are based on collection with auto_id = True
.
Insert entities in a partition
>>> inserted_vector_ids = client.insert('test01', hybrid_entities, partition_tag="tag01")
To verify the entities you have inserted, use get_entity_by_id()
.
>>> entities = client.get_entity_by_id(collection_name='test01', ids=inserted_vector_ids[:10])
Delete entities by ID
You can delete these entities by:
>>> status = client.delete_entity_by_id('test01', ids[:10])
>>> status
Status(code=0, message='OK')
Flush data in one or multiple collections to disk
When performing operations related to data changes, you can flush the data from memory to disk to avoid possible data loss. Milvus also supports automatic flushing, which runs at a fixed interval to flush the data in all collections to disk. You can use the Milvus server configuration file to set the interval.
>>> client.flush(['test01'])
Compact all segments in a collection
A segment is a data file that Milvus automatically creates by merging inserted vector data. A collection can contain multiple segments. If some vectors are deleted from a segment, the space taken by the deleted vectors cannot be released automatically. You can compact segments in a collection to release space.
>>> status = client.compact('test01')
>>> status
Status(code=0, message='OK')
Search entities in collections/partitions
Search entities in a collection
- Prepare search parameters.
"term"
and"range"
is optional,"params"
in"vector"
stands for index params.
# This dsl will search topk `entities` that are
# close to vectors[:1] searched by `IVF_FLAT` index with `nprobe = 10` and `metric_type = L2`,
# AND field "A" in [1, 2, 5],
# AND field "B" greater than 1 less than 100
>>> dsl = {
... "bool": {
... "must":[
... {
... "term": {"A": [1, 2, 5]}
... },
... {
... "range": {"B": {"GT": 1, "LT": 100}}
... },
... {
... "vector": {
... "Vec": {"topk": 10, "query": vectors[:1], "metric_type": "L2", "params": {"nprobe": 10}}
... }
... }
... ]
... }
... }
A search without hybrid conditions with IVF_FLAT
index would be like:
>>> dsl = {
... "bool": {
... "must":[
... {
... "vector": {
... "Vec": {"topk": 10, "query": vectors[:1], "metric_type": "L2", "params": {"nprobe": 10}}
... }
... }
... ]
... }
... }
A FLAT
search doesn't need index params, so the query would be like:
>>> dsl = {
... "bool": {
... "must":[
... {
... "vector": {
... "Vec": {"topk": 10, "query": vectors[0], "metric_type": "L2"}
... }
... }
... ]
... }
... }
- Search entities.
With fields=["B"]
, not only can you get entity ids and distances, but also values of a spacific field B.
# search entities and get entity field B back
>>> results = client.search('test01', dsl, fields=["B"])
You can obtain ids, distances and fields by entities in results.
# Results consist of number-of-query entities
>>> entities = results[0]
# Entities consists of topk entity
>>> entity = entities[0]
# You can get all ids and distances by entities
>>> all_ids = entities.ids
>>> all_distances = entities.distances
# Or you can get them one by one by entity
>>> a_id = entity.id
>>> a_distance = entity.distance
>>> a_field = entity.entity.B # getattr(entity.entity, "B")
Note: If you don't provide fields in search, you will only get ids and distances.
Search entities in a partition
# Search entities in a partition `tag01`
>>> client.search(collection_name='test01', dsl=dsl, partition_tags=['tag01'])
Note: If you do not specify
partition_tags
, Milvus searches the whole collection.
Close client
>>> client.close()
FAQ
I'm getting random "socket operation on non-socket" errors from gRPC when connecting to Milvus from an application served on Gunicorn
Make sure to set the environment variable GRPC_ENABLE_FORK_SUPPORT=1
. For reference, see https://zhuanlan.zhihu.com/p/136619485
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pymilvus-distributed-0.0.66.tar.gz
.
File metadata
- Download URL: pymilvus-distributed-0.0.66.tar.gz
- Upload date:
- Size: 93.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/54.2.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7b6b147af227356677ab2f96f8a5341e10b6950ee59b156cc6d1e8b5d591a3d2 |
|
MD5 | 3378e701fc89797b78213f971400690d |
|
BLAKE2b-256 | 33ad42ebfd56e1154675d18a193d164a67c65ca6ac978efd7ad93dee46ce8197 |
File details
Details for the file pymilvus_distributed-0.0.66-py3-none-any.whl
.
File metadata
- Download URL: pymilvus_distributed-0.0.66-py3-none-any.whl
- Upload date:
- Size: 107.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/54.2.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4d02a9c3bf859924fa7713e21384a873ab7d0b6a6fc626d66c6ec05e575a05e9 |
|
MD5 | 1ffc3d368be743cc962190ea0e2b94b6 |
|
BLAKE2b-256 | 1cdcfc0c4e1a10678bdc7aa0077014d3670bb3275662457e23a25c66a334741d |