Python Sdk for Milvus
Project description
Milvus Python SDK
Using Milvus python sdk for Milvus
Download
Pymilvus only supports python >= 3.4
, is fully tested under 3.4, 3.5, 3.6.
Python 3.7 can work, but not fully tested yet.
Pymilvus can be downloaded using pip
. If no use, try pip3
$ pip install pymilvus
Upgrade to newest version
$ pip install --upgrade pymilvus
Import
from milvus import Milvus, IndexType, Status
Getting started
Initial a Milvus
instance and connect
to the sever
>>> milvus = Milvus()
>>> milvus.connect(host='SERVER-HOST', port='SERVER-PORT')
Status(code=0, message="Success")
Once successfully connected, you can get the version of server
>>> milvus.server_version()
(Status(code=0, message='Success'), 0.3.0) # this is example version, the real version may vary
Add a new table
First set param
>>> param = {'table_name'='test01', 'dimension'=256, 'index_type'=IndexType.FLAT, 'store_raw_vector'=False}
Then create table
>>> milvus.create_table(param)
Status(message='Table test01 created!', code=0)
Describe the table we just created
>>> milvus.describe_table('test01')
(Status(code=0, message='Success!'), TableSchema(table_name='test01',dimension=256, index_type=1, store_raw_vector=False))
Add vectors into table test01
First create 20 vectors of 256-dimension.
- Note that
random
andpprint
we used here is for creating fake vectors data and pretty print, you may not need them in your project
>>> import random
>>> from pprint import pprint
>>> dim = 256 # Dimension of the vector
# Initialize 20 vectors of 256-dimension
>>> fake_vectors = [[random.random() for _ in range(dim)] for _ in range(20)]
Then add vectors into table test01
>>> status, ids = milvus.add_vectors(table_name='test01', records=vectors)
>>> print(status)
Status(code=0, message='Success')
>>> pprint(ids) # List of ids returned
23455321135511233
12245748929023489
...
Search vectors
# create 5 vectors of 256-dimension
>>> q_records = [[random.random() for _ in range(dim)] for _ in range(5)]
Then get results
>>> status, results = milvus.search_vectors(table_name='test01', query_records=q_records, top_k=10)
>>> print(status)
Status(code=0, message='Success')
>>> pprint(results) # Searched top_k vectors
Delet the table we just created
>>> milvus.delete_table(table_name='test01')
Status(code=0, message='Success')
Disconnect with the server
>>> milvus.disconnect()
Status(code=0, message='Success')
Example python
There are some small examples in examples/
, you can find more guide there.
Build docs
$ sphinx-build -b html doc/en/ doc/en/build
If you encounter any problems or bugs, please add new issues
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
Hashes for pymilvus-0.1.17-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 124ad4a8239840b78c89040b7ccb22d2ab2ce33bfe40f4b62db1f0f918c023a2 |
|
MD5 | e6f25930e0abc8138a260a1de784ec5c |
|
BLAKE2b-256 | 4289b54d48b58a9b854454f67167f04adcc35cd13c387560763ac855988556b7 |