Skip to main content

Python Sdk for Milvus

Project description

Milvus Python SDK

Using Milvus python sdk for Milvus

Download

Pymilvus only supports python >= 3.4, is fully tested under 3.4, 3.5, 3.6, 3.7.

Pymilvus can be downloaded using pip. If no use, try pip3

$ pip install pymilvus

Upgrade to newest version

$ pip install --upgrade pymilvus

Import

from milvus import Milvus, IndexType, Status

Getting started

Initial a Milvus instance and connect to the sever

>>> milvus = Milvus()

>>> milvus.connect(host='SERVER-HOST', port='SERVER-PORT')
Status(code=0, message="Success")

Once successfully connected, you can get the version of server

>>> milvus.server_version()
(Status(code=0, message='Success'), 0.3.0)  # this is example version, the real version may vary

Add a new table

First set param

>>> param = {'table_name'='test01', 'dimension'=256, 'index_type'=IndexType.FLAT, 'store_raw_vector'=False}

Then create table

>>> milvus.create_table(param)
Status(message='Table test01 created!', code=0)

Describe the table we just created

>>> milvus.describe_table('test01')
(Status(code=0, message='Success!'), TableSchema(table_name='test01',dimension=256, index_type=1, store_raw_vector=False))

Add vectors into table test01

First create 20 vectors of 256-dimension.

  • Note that random and pprint we used here is for creating fake vectors data and pretty print, you may not need them in your project
>>> import random
>>> from pprint import pprint

>>> dim = 256  # Dimension of the vector

# Initialize 20 vectors of 256-dimension
>>> fake_vectors = [[random.random() for _ in range(dim)] for _ in range(20)]

Then add vectors into table test01

>>> status, ids = milvus.add_vectors(table_name='test01', records=vectors)
>>> print(status)
Status(code=0, message='Success')
>>> pprint(ids) # List of ids returned
23455321135511233
12245748929023489
...

Search vectors

# create 5 vectors of 256-dimension
>>> q_records = [[random.random() for _ in range(dim)] for _ in range(5)]

Then get results

>>> status, results = milvus.search_vectors(table_name='test01', query_records=q_records, top_k=10)
>>> print(status)
Status(code=0, message='Success')
>>> pprint(results) # Searched top_k vectors

Delet the table we just created

>>> milvus.delete_table(table_name='test01')
Status(code=0, message='Success')

Disconnect with the server

>>> milvus.disconnect()
Status(code=0, message='Success')

Example python

There are some small examples in examples/, you can find more guide there.

Build docs

$ sphinx-build -b html doc/en/ doc/en/build

If you encounter any problems or bugs, please add new issues

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pymilvus-0.1.21-py3-none-any.whl (25.2 kB view details)

Uploaded Python 3

File details

Details for the file pymilvus-0.1.21-py3-none-any.whl.

File metadata

  • Download URL: pymilvus-0.1.21-py3-none-any.whl
  • Upload date:
  • Size: 25.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.4

File hashes

Hashes for pymilvus-0.1.21-py3-none-any.whl
Algorithm Hash digest
SHA256 61dde56b23c403faebe9db91499b57103a34230c50e47cb5bff406a3732bdf41
MD5 aa02922c72f99d957ab5fa67558a388a
BLAKE2b-256 ff7f22ff69a060dc06c55d442c0aeef166f134b73e532dc6d1b1abc66f75aa58

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page