Python Sdk for Milvus
Project description
Milvus Python SDK
Python SDK for Milvus. To contribute code to this project, please read our contribution guidelines first.
For detailed SDK documentation, refer to API Documentation.
- New features
- Get started
- Basic operations
- Connect to the Milvus server
- Create/Drop collections
- Create/Drop partitions in a collection
- Create/Drop indexes in a collection
- Insert/Delete vectors in collections/partitions
- Flush data in one or multiple collections to disk
- Compact all segments in a collection
- Search vectors in collections/partitions
- Disconnect from the Milvus server
Get started
Prerequisites
pymilvus only supports Python 3.5 or higher.
Install pymilvus
You can install pymilvus via pip
or pip3
for Python3:
$ pip3 install pymilvus
The following collection shows Milvus versions and recommended pymilvus versions:
Milvus version | Recommended pymilvus version |
---|---|
0.3.0 | 0.1.13 |
0.3.1 | 0.1.25 |
0.4.0 | 0.2.2 |
0.5.0 | 0.2.3 |
0.5.1 | 0.2.3 |
0.5.2 | 0.2.3 |
0.5.3 | 0.2.5 |
0.6.0 | 0.2.6, 0.2.7 |
0.7.0 | 0.2.8 |
0.7.1 | 0.2.9 |
0.8.0 | 0.2.10 |
You can install a specific version of pymilvus by:
$ pip install pymilvus==0.2.10
You can upgrade pymilvus
to the latest version by:
$ pip install --upgrade pymilvus
Examples
Refer to examples for more example programs.
Basic operations
Connect to the Milvus server
-
Import pymilvus.
# Import pymilvus >>> from milvus import Milvus, IndexType, MetricType, Status
-
Connect to Milvus server by using one of the following methods:
# Connect to Milvus server >>> client = Milvus(host='localhost', port='19530') >>> client.connect()
Note: In the above code, default values are used for
host
andport
parameters. Feel free to change them to the IP address and port you set for Milvus server.>>> client = Milvus(uri='tcp://localhost:19530')
Create/Drop collections
Create a collection
-
Prepare collection parameters.
# Prepare collection parameters >>> param = {'collection_name':'test01', 'dimension':128, 'index_file_size':1024, 'metric_type':MetricType.L2}
-
Create collection
test01
with dimension size as 256, size of the data file for Milvus to automatically create indexes as 1024, and metric type as Euclidean distance (L2).# Create a collection >>> client.create_collection(param)
Drop a collection
# Drop collection
>>> client.drop_collection(collection_name='test01')
Create/Drop partitions in a collection
Create a partition
You can split collections into partitions by partition tags for improved search performance. Each partition is also a collection.
# Create partition
>>> client.create_partition(collection_name='test01', partition_tag='tag01')
Use show_partitions()
to verify whether the partition is created.
# Show partitions
>>> client.show_partitions(collection_name='test01')
Drop a partition
>>> client.drop_partition(collection_name='test01', partition_tag='tag01')
Create/Drop indexes in a collection
Create an index
Note: In production, it is recommended to create indexes before inserting vectors into the collection. Index is automatically built when vectors are being imported. However, you need to create the same index again after the vector insertion process is completed because some data files may not meet the
index_file_size
and index will not be automatically built for these data files.
-
Prepare index parameters. The following command uses
IVF_FLAT
index type as an example.# Prepare index param >>> ivf_param = {'nlist': 16384}
-
Create an index for the collection.
# Create index >>> client.create_index('test01', IndexType.IVF_FLAT, ivf_param)
Drop an index
>>> client.drop_index('test01')
Insert/Delete vectors in collections/partitions
Insert vectors in a collection
-
Generate 20 vectors of 256 dimension.
>>> import random >>> dim = 128 # Generate 20 vectors of 256 dimension >>> vectors = [[random.random() for _ in range(dim)] for _ in range(20)]
-
Insert the list of vectors. If you do not specify vector ids, Milvus automatically generates IDs for the vectors.
# Insert vectors >>> client.insert(collection_name='test01', records=vectors)
Alternatively, you can also provide user-defined vector ids:
>>> vector_ids = [id for id in range(20)] >>> client.insert(collection_name='test01', records=vectors, ids=vector_ids)
Insert vectors in a partition
>>> client.insert('test01', vectors, partition_tag="tag01")
To verify the vectors you have inserted, use get_vector_by_id()
. Assume you have a vector with the following ID.
>>> status, vector = client.get_vector_by_id(collection_name='test01', vector_id=0)
Delete vectors by ID
Assume you have some vectors with the following IDs:
>>> ids = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
You can delete these vectors by:
>>> client.delete_by_id('test01', ids)
Flush data in one or multiple collections to disk
When performing operations related to data changes, you can flush the data from memory to disk to avoid possible data loss. Milvus also supports automatic flushing, which runs at a fixed interval to flush the data in all collections to disk. You can use the Milvus server configuration file to set the interval.
>>> client.flush(['test01'])
Compact all segments in a collection
A segment is a data file that Milvus automatically creates by merging inserted vector data. A collection can contain multiple segments. If some vectors are deleted from a segment, the space taken by the deleted vectors cannot be released automatically. You can compact segments in a collection to release space.
>>> client.compact(collection_name='test01')
Search vectors in collections/partitions
Search vectors in a collection
- Prepare search parameters.
>>> search_param = {'nprobe': 16}
- Search vectors.
# create 5 vectors of 32-dimension
>>> q_records = [[random.random() for _ in range(dim)] for _ in range(5)]
# search vectors
>>> client.search(collection_name='test01', query_records=q_records, top_k=2, params=search_param)
Search vectors in a partition
# create 5 vectors of 32-dimension
>>> q_records = [[random.random() for _ in range(dim)] for _ in range(5)]
>>> client.search(collection_name='test01', query_records=q_records, top_k=1, partition_tags=['tag01'], params=search_param)
Note: If you do not specify
partition_tags
, Milvus searches the whole collection.
Disconnect from the Milvus server
>>> client.disconnect()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for pymilvus-0.2.10-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 14c3d13e6314b06e4d5efabcd0a5a58c205d0c79b07f66bcab5b7d4a4262108b |
|
MD5 | 731dc20aafc8899d899362bdb7d97a06 |
|
BLAKE2b-256 | 80a1d06faa641abf2d9e6af634a97199bbc182e37101d344c13df2e7df6c4742 |