Python Machine Learning Utilities
Project description
pymlutil
Python Machine Learning utilities:
functions
GaussianBasis
Computes a unit height gaussian bell curve function
$ GaussianBasis(x, zero, sigma) = e^{-\frac{(x-zero)^2}{2*sigma^2}} $ \
- x : function input
- zero : location of the peak center
- sigma: curve with or standard deviation
def GaussianBasis(x, zero=0.0, sigma=0.33)
Example:
x = np.arange(-2.0, 2.0, 0.01)
y = GaussianBasis(torch.tensor(x))
plt.plot(x, y)
plt.show()
imutial
jsonutil
metrics
s3
torch_util
version
workflow
Packaging Python Projects How to Publish an Open-Source Python Package to PyPI
-
Install twine:
pip3 install twine
-
Build whl:
py setup.py sdist bdist_wheel
-
Upload package to pipy
twine upload dist/*
-
Load package into project
pip3 install --upgrade pymlutil
-
Include pymlutil into project
from pymlutil import *
Notes
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pymlutil-0.0.65.tar.gz
(13.4 kB
view details)
Built Distribution
pymlutil-0.0.65-py3-none-any.whl
(18.6 kB
view details)
File details
Details for the file pymlutil-0.0.65.tar.gz
.
File metadata
- Download URL: pymlutil-0.0.65.tar.gz
- Upload date:
- Size: 13.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.62.2 importlib-metadata/4.8.2 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | aae5f5209756dd4a3f725476e0737ded2af8a3786ce68678c15269e90b79e1b1 |
|
MD5 | e3749ca5a156d0d3d1be2eabc0fa61c9 |
|
BLAKE2b-256 | f74b2437cab5a3a703a8f46fbd81e86340dcdb93a60be1b1edff189d4fa95cb4 |
File details
Details for the file pymlutil-0.0.65-py3-none-any.whl
.
File metadata
- Download URL: pymlutil-0.0.65-py3-none-any.whl
- Upload date:
- Size: 18.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.62.2 importlib-metadata/4.8.2 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5421b1a054ba2dee141d9546b110f92205cccfc0d7f6878e628b42f48803ffc7 |
|
MD5 | 871473fd61511d0276b2ac6802d7760a |
|
BLAKE2b-256 | 149d2760ded54e98864b2c95c76862e75239ae8a4373b446145e230553fc3e46 |