Skip to main content

Mass ratio variance-based outlier factor (MOF)

Project description

pymof

Installation

You can install pymof using pip

pip install pymof           # normal install
pip install --upgrade pymof  # or update if needed

Required Dependencies :

  • Python 3.9 or higher
  • numpy>=1.23
  • numba>=0.56.0
  • scipy>=1.8.0
  • scikit-learn>=1.2.0
  • matplotlib>=3.5

Mass ratio variance-based outlier factor (MOF)


the outlier score of each data point is called MOF. It measures the global deviation of density given sample with respect to other data points. it is global in the outlier score depend on how isolated. data point is with respect to all data points in the data set. the variance of mass ratio can identify data points that have a substantially. lower density compared to other data points. These are considered outliers.

MOF()

Initial a model of MOF

Parameters :
Return :
        self : object
                object of MOF model

MOF.fit(Data)

Fit data to MOF model Note The data size should not exceed 10000 points because MOF uses high memory.

Parameters :
        Data  : numpy array of shape (n_points, d_dimensions)
                The input samples.
Return :
        self  : object
                fitted estimator

MOF.visualize()

Visualize data points with MOF's scores Note cannot visualize data points with dimension more than 3

Parameters :
Return :
    decision_scores_ : numpy array of shape (n_samples)
                                decision score for each point

MOF attributes

Attributes Type Details
MOF.Data numpy array of shape (n_points, d_dimensions) input data for model
MOF.MassRatio numpy array of shape (n_samples, n_points) MassRatio for each a pair of points
MOF.decision_scores_ numpy array of shape (n_samples) decision score for each point

Examples

# This example demonstrates  the usage of MOF
from pymof import MOF
import numpy as np
X = [[-2.30258509,  7.01040212,  5.80242044],
    [ 0.09531018,  7.13894636,  5.91106761],
    [ 0.09531018,  7.61928251,  5.80242044],
    [ 0.09531018,  7.29580291,  6.01640103],
    [-2.30258509, 12.43197678,  5.79331844],
    [ 1.13140211,  9.53156118,  7.22336862],
    [-2.30258509,  7.09431783,  5.79939564],
    [ 0.09531018,  7.50444662,  5.82037962],
    [ 0.09531018,  7.8184705,   5.82334171],
    [ 0.09531018,  7.25212482,  5.91106761]]
X = np.array(X)
c = MOF()
c.fit(X)
scores = c.decision_scores_
print(scores)
c.visualize()

Output

[0.34541068 0.11101711 0.07193073 0.07520904 1.51480377 0.94558894 0.27585581 0.06242823 0.2204504  0.02247725]

Visualize Data points

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymof-0.1.tar.gz (4.2 kB view details)

Uploaded Source

Built Distribution

pymof-0.1-py3-none-any.whl (4.5 kB view details)

Uploaded Python 3

File details

Details for the file pymof-0.1.tar.gz.

File metadata

  • Download URL: pymof-0.1.tar.gz
  • Upload date:
  • Size: 4.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.6

File hashes

Hashes for pymof-0.1.tar.gz
Algorithm Hash digest
SHA256 3568f7be8a2ba00e38be03fc8014887a7431671ad767a2f27e8e6a258ccce6d0
MD5 e599bc86294e9cd77e5d25c9189014e9
BLAKE2b-256 670db3dd9cedd515a7dd2813e462a3c1b9af5e3677e17a6a067160cdec0479c6

See more details on using hashes here.

File details

Details for the file pymof-0.1-py3-none-any.whl.

File metadata

  • Download URL: pymof-0.1-py3-none-any.whl
  • Upload date:
  • Size: 4.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.6

File hashes

Hashes for pymof-0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 c7c9d19e4400037f44dbad6c75352b8e5489e892568ee3abf2be88c6c7136d9f
MD5 c1feb58092b7947c77d19574fca9bb94
BLAKE2b-256 116f5b85cecff9287590a04bea62c6f744c8bc48d886377ab3581fff3290dbea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page