Skip to main content

Mass ratio variance-based outlier factor (MOF)

Project description

pymof

Installation

You can install pymof using pip

pip install pymof           # normal install
pip install --upgrade pymof  # or update if needed

Required Dependencies :

  • Python 3.9 or higher
  • numpy>=1.23
  • numba>=0.56.0
  • scipy>=1.8.0
  • scikit-learn>=1.2.0
  • matplotlib>=3.5

Mass ratio variance-based outlier factor (MOF)


the outlier score of each data point is called MOF. It measures the global deviation of density given sample with respect to other data points. it is global in the outlier score depend on how isolated. data point is with respect to all data points in the data set. the variance of mass ratio can identify data points that have a substantially. lower density compared to other data points. These are considered outliers.

MOF()

Initial a model of MOF

Parameters :
Return :
        self : object
                object of MOF model

MOF.fit(Data)

Fit data to MOF model
Note The data size should not exceed 10000 points because MOF uses high memory.

Parameters :
        Data  : numpy array of shape (n_points, d_dimensions)
                The input samples.
Return :
        self  : object
                fitted estimator

MOF.visualize()

Visualize data points with MOF's scores
Note cannot visualize data points with dimension more than 3

Parameters :
Return :
    decision_scores_ : numpy array of shape (n_samples)
                                decision score for each point

MOF attributes

Attributes Type Details
MOF.Data numpy array of shape (n_points, d_dimensions) input data for model
MOF.MassRatio numpy array of shape (n_samples, n_points) MassRatio for each a pair of points
MOF.decision_scores_ numpy array of shape (n_samples) decision score for each point

Examples

# This example demonstrates  the usage of MOF
from pymof import MOF
import numpy as np
X = [[-2.30258509,  7.01040212,  5.80242044],
    [ 0.09531018,  7.13894636,  5.91106761],
    [ 0.09531018,  7.61928251,  5.80242044],
    [ 0.09531018,  7.29580291,  6.01640103],
    [-2.30258509, 12.43197678,  5.79331844],
    [ 1.13140211,  9.53156118,  7.22336862],
    [-2.30258509,  7.09431783,  5.79939564],
    [ 0.09531018,  7.50444662,  5.82037962],
    [ 0.09531018,  7.8184705,   5.82334171],
    [ 0.09531018,  7.25212482,  5.91106761]]
X = np.array(X)
c = MOF()
c.fit(X)
scores = c.decision_scores_
print(scores)
c.visualize()

Output

[0.34541068 0.11101711 0.07193073 0.07520904 1.51480377 0.94558894 0.27585581 0.06242823 0.2204504  0.02247725]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymof-0.2.1.tar.gz (4.2 kB view details)

Uploaded Source

Built Distribution

pymof-0.2.1-py3-none-any.whl (4.5 kB view details)

Uploaded Python 3

File details

Details for the file pymof-0.2.1.tar.gz.

File metadata

  • Download URL: pymof-0.2.1.tar.gz
  • Upload date:
  • Size: 4.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pymof-0.2.1.tar.gz
Algorithm Hash digest
SHA256 d388e530b964673d78233a7a630c8c53c7c543f42bf0aebc457d48a0991294db
MD5 4538042b281c834464ce637435094f98
BLAKE2b-256 32111ff193cedeb9a1c8f5bf82b079c7a71c8b3e9a671d579d68d072cb97c968

See more details on using hashes here.

File details

Details for the file pymof-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: pymof-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 4.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pymof-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d53a4eb72c02af26c6184159c72d133b0dedbd48d5aedfc7e9e90127b01ab637
MD5 c759f8c6ff6df43e41a845f0175156d8
BLAKE2b-256 6f2acb0f837c2339ac6b715ff45325d770c3b6f6aeb048641eedf423b629be23

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page