Skip to main content

pymongoshell is a class that makes it easy to use MongoDB in the python shell

Project description

pymongoshell : MongoDB in the python shell

The Python shell is the ideal environment for Python developers to interact with MongoDB. However output cursors and interacting with the database requires a little more boilerplate than is convenient. the pymongoshell package provides a set a convenience functions and objects to allow easier interaction with MongoDB via the Python interpreter.

The key value adds for the pymongoshell over the standard pymongo package are:

  • Proper pagination of output
  • Pretty printing of output
  • Ability to stream output to a file in parallel to the screen
  • Full compatibility with pymongo API

The shell is actually a shim class that wraps the pymongo.Collection class. The class pymongoshell intercepts method and property requests and forwards them to that class.

We then process the return values using the properties:

  • pagination
  • linenumbers
  • prettyprinting

to format the output sensibly for a human viewer.

Installation

you can install the software with pip3. The pymongoshell only supports Python 3.

$ pip3 install pymongoshell

Using the pymongoshell

First we create a MongoClient object. This is a proxy for all the commands we can run using pymongoshell. It is exactly analogous to the PyMongo MongoClient and is in fact just a shim. We support one additional argument banner. This argument controls whether we output a banner detailing which version and which collections

>>> import pymongoshell
>>> c = pymongoshell.MongoClient()
pymongoshell 1.1.0b5
Using collection 'test.test'
Server selection timeout set to 5.0 seconds
>>> c
pymongoshell.MongoClient(banner=True,
                         database_name='test',
                         collection_name='test',
                         host= 'mongodb://localhost:27017')
>>>

We can also access the native MongoClient object by using the .client property.

>>> c.client
MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True, serverselectiontimeoutms=5000)
>>>

Each pymongoshell.MongoClient object has a set of standard properties that represent the pymongo objects. In normal use you will not reference these objects:

>>> c.database
Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True, serverselectiontimeoutms=5000), 'test')
>>> c.collection
Collection(Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True, serverselectiontimeoutms=5000), 'test'), 'test')
>>> c.uri
'mongodb://localhost:27017'
>>> c.database_name
'test'
>>> c.collection_name
'test.test'
>>>

Pick a collection

To use a particular collection just assign the name to the collection object. You can use dotted notation to pick a new database and collection at the same time. Just specify the new database and collection name by assigning them to the collection object.

>>> import pymongoshell
>>> c=pymongoshell.MongoClient()
pymongoshell 1.1.0b6
Using collection 'test.test'
Server requests set to timeout after 5.0 seconds
>>> c.collection_name
'test.test'
>>> c.collection_name="hello"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "C:\Users\joe\GIT\pymongoshell\pymongoshell\mongoclient.py", line 747, in __setattr__
    object.__setattr__(self, name, value)
AttributeError: can't set attribute
>>> c.collection="test2"
>>> c.collection_name
'test.test2'
>>> c.collection="dummy.test3"
>>> c.collection_name
'dummy.test3'
>>> c.collection
Collection(Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True, serverselectiontimeoutms=5000), 'dummy'), 'test3')
>>>

Changing Format of Output

The pymongoshell supports three formatting directives. All are boolean values and all are true by default.

>>> c.paginate
True
>>> c.pretty_print
True
>>> c.line_numbers
True
>>>

Paginate

Pagination ensures that the results of the output don't scroll off the screen. The pagination uses the screen dimensions to properly format and wrap the output so that regardless of screen size changes the output can always be viewed. The viewport is recalcuated dynamically so the user can change the terminal window size while paging throughout. Pagination can be turned off by setting paginate to false.

>>> c.paginate=False
>>> c.paginate
False

pretty_print

Pretty printing is used to ensure that the JSON documents output are properly formatted and easy to read. For small documents turning pretty printing off will result in the documents printing on a single line which can sometimes be easier to read.

To turn off pretty_print just set the value to False.

>>> c.pretty_print=False
>>>

line_numbers

Line numbers are added by default to allow a user to keep track of location in a large stream output. Similarily to the other properties line_numbers can be toggled on and off by settting the flag.

>>> c.line_numbers=False
>>>

Convenience Functions

The class provides a number of convenience functions to allow easy access to some of the more common administrative functions.

lcols

list the collections in the current database.

ldbs

List the databases on the current cluster.

drop_database

To drop a database from a server you can run the drop_database command.

>>> c.collection="dummy.data"
>>> c.insert_one({"name":"Joe Drumgoole"})
Inserted: 5e9790385b17a0269489bfcc
>>> c.ldbs
1  : admin
2  : config
3  : dummy
4  : geo_example
5  : local
>>> c.drop_database()
Drop database: 'dummy' [y/Y]: y
>>> c.ldbs
1  : admin
2  : config
3  : geo_example
4  : local
>>>

is_master

The is_master command returns the status and configuration of the Mongod server and/or cluster thatthe client is connected to. This represents the typical results from a singlemongod running locally. The is_master is the canonical way to determine if a client is connected to a mongod or mongod cluster.

>>> c.is_master()
1  : {'connectionId': 9,
2  :  'ismaster': True,
3  :  'localTime': datetime.datetime(2020, 4, 1, 11, 32, 46, 753000),
4  :  'logicalSessionTimeoutMinutes': 30,
5  :  'maxBsonObjectSize': 16777216,
6  :  'maxMessageSizeBytes': 48000000,
7  :  'maxWireVersion': 8,
8  :  'maxWriteBatchSize': 100000,
9  :  'minWireVersion': 0,
10 :  'ok': 1.0,
11 :  'readOnly': False}
>>>

coll_stats

The coll_stats command returns collection stats for the current collection defined by c.collection. There is no directly analogous command in PyMongo. In instead it is constructed using the command operation. function in PyMongo.

command

Many admin operations in MongoDB are too esoteric to warrant a specific API call in the driver. For these operations we support the generic command option.

>>> c.command('buildinfo')
1  : {'allocator': 'tcmalloc',
2  :  'bits': 64,
3  :  'buildEnvironment': {'cc': 'cl: Microsoft (R) C/C++ Optimizing Compiler '
4  :                             'Version 19.16.27032.1 for x64',
5  :                       'ccflags': '/nologo /EHsc /W3 /wd4068 /wd4244 /wd4267 '
6  :                                  '/wd4290 /wd4351 /wd4355 /wd4373 /wd4800 '
7  :                                  '/wd5041 /wd4291 /we4013 /we4099 /we4930 /WX '
8  :                                  '/errorReport:none /MD /O2 /Oy- /bigobj '
9  :                                  '/utf-8 /permissive- /Zc:__cplusplus '
10 :                                  '/Zc:sizedDealloc /volatile:iso '
11 :                                  '/diagnostics:caret /std:c++17 /Gw /Gy '
12 :                                  '/Zc:inline',
13 :                       'cxx': 'cl: Microsoft (R) C/C++ Optimizing Compiler '
14 :                              'Version 19.16.27032.1 for x64',
15 :                       'cxxflags': '/TP',
16 :                       'distarch': 'x86_64',
17 :                       'distmod': '2012plus',
18 :                       'linkflags': '/nologo /DEBUG /INCREMENTAL:NO '
19 :                                    '/LARGEADDRESSAWARE /OPT:REF',
20 :                       'target_arch': 'x86_64',
21 :                       'target_os': 'windows'},
22 :  'debug': False,
23 :  'gitVersion': 'a4b751dcf51dd249c5865812b390cfd1c0129c30',
24 :  'javascriptEngine': 'mozjs',
25 :  'maxBsonObjectSize': 16777216,
26 :  'modules': [],
27 :  'ok': 1.0,
28 :  'openssl': {'running': 'Windows SChannel'},
29 :  'storageEngines': ['biggie', 'devnull', 'ephemeralForTest', 'wiredTiger'],
30 :  'sysInfo': 'deprecated',
31 :  'targetMinOS': 'Windows 7/Windows Server 2008 R2',
32 :  'version': '4.2.0',
33 :  'versionArray': [4, 2, 0, 0]}
>>>

count_documents

To accurately count a number of documents in a collection we can use the count_documents operation. You can apply a filter to limit the number of documents returned.

In this example lets connect to a MongoDB Atlas database hosted in the cloud.

c=pymongoshell.MongoClient("mongodb+srv://readonly:readonly@demodata-rgl39.mongodb.net/test?retryWrites=true")
pymongoshell 1.1.0b5
Using collection 'test.test'
Server selection timeout set to 5.0 seconds
>>> c.collection="demo.zipcodes"
>>> c.count_documents()
29350
>>> c.count_documents({"city" : "NEW YORK"})
40
>>>

This tells us there are 29350 zip codes in the USA and 49 in New York. This is an old data set so those numbers may not be quite up to date with the latest US zipcodes.

Find Examples

Let's create an example dataset.

>>> import pymongoshell
>>> c=pymongoshell.MongoClient()
pymongoshell 1.1.0b5
Using collection 'test.test'
Server requests set to timeout after 5.0 seconds
>>>
>>> d1 = {"name" : "Heracles"}
>>> d2 = {"name" : "Orpheus"}
>>> d3 = {"name" : "Jason"}
>>> d4 = {"name" : "Odysseus"}
>>> d5 = {"name" : "Achilles"}
>>> d6 = {"name" : "Menelaeus"}
>>> c.insert_one(d1)
Inserted: 5e9479265b17a0612c508328
>>> c.insert_many([d2,d3,d4,d5])
1  : [ObjectId('5e9479275b17a0612c508329'),
2  :  ObjectId('5e9479275b17a0612c50832a'),
3  :  ObjectId('5e9479275b17a0612c50832b'),
4  :  ObjectId('5e9479275b17a0612c50832c')]
>>>
>>> p1 = {"name" : "Joe Drumgoole",
...       "social": ["twitter", "instagram", "linkedin"],
...       "mobile": "+353 87xxxxxxx",
...       "email" : "Joe.Drumgoole@mongodb.com"}
>>> p2 = {"name" : "Hercules Mulligan",
...       "social": ["twitter", "linkedin"],
...       "mobile": "+1 12345678",
...       "email" : "Hercules.Mulligan@example.com"}
>>> p3 = {"name" : "Aaron Burr",
...       "social": ["instagram"],
...       "mobile": "+1 67891011",
...       "email" : "Aaron.Burr@example.com"}
>>> c.insert_many([p1,p2,p3])
1  : [ObjectId('5e9478e75b17a0612c508325'),
2  :  ObjectId('5e9478e75b17a0612c508326'),
3  :  ObjectId('5e9478e75b17a0612c508327')]
>>>

Find all documents

>>> c.find()
1  : {'_id': ObjectId('5e9478e75b17a0612c508325'),
2  :  'email': 'Joe.Drumgoole@mongodb.com',
3  :  'mobile': '+353 87xxxxxxx',
4  :  'name': 'Joe Drumgoole',
5  :  'social': ['twitter', 'instagram', 'linkedin']}
6  : {'_id': ObjectId('5e9478e75b17a0612c508326'),
7  :  'email': 'Hercules.Mulligan@example.com',
8  :  'mobile': '+1 12345678',
9  :  'name': 'Hercules Mulligan',
10 :  'social': ['twitter', 'linkedin']}
11 : {'_id': ObjectId('5e9478e75b17a0612c508327'),
12 :  'email': 'Aaron.Burr@example.com',
13 :  'mobile': '+1 67891011',
14 :  'name': 'Aaron Burr',
15 :  'social': ['instagram']}
16 : {'_id': ObjectId('5e9479265b17a0612c508328'), 'name': 'Heracles'}
17 : {'_id': ObjectId('5e9479275b17a0612c508329'), 'name': 'Orpheus'}
18 : {'_id': ObjectId('5e9479275b17a0612c50832a'), 'name': 'Jason'}
19 : {'_id': ObjectId('5e9479275b17a0612c50832b'), 'name': 'Odysseus'}
20 : {'_id': ObjectId('5e9479275b17a0612c50832c'), 'name': 'Achilles'}
>>>

Find all documents with an instagram social setting

Note that MongoDB knows to look inside an array when the target field is an array.

>>> c.find({'social':'instagram'})
1  : {'_id': ObjectId('5e9478e75b17a0612c508325'),
2  :  'email': 'Joe.Drumgoole@mongodb.com',
3  :  'mobile': '+353 87xxxxxxx',
4  :  'name': 'Joe Drumgoole',
5  :  'social': ['twitter', 'instagram', 'linkedin']}
6  : {'_id': ObjectId('5e9478e75b17a0612c508327'),
7  :  'email': 'Aaron.Burr@example.com',
8  :  'mobile': '+1 67891011',
9  :  'name': 'Aaron Burr',
10 :  'social': ['instagram']}
>>>

##Connecting to a specific MongoDB URI

You can connect to a different database by passing in a different URI to the host parameter for pymongoshell.MongoClient. Here is an example connection to a MongoDB Atlas hosted database.

The example below is a live read-only database. You can try it out at the MongoDB URI:

"mongodb+srv://readonly:readonly@demodata-rgl39.mongodb.net/test?retryWrites=true"

In the pymongoshell:

>>> import pymongoshell
>>> atlas=pymongoshell.MongoClient(host="mongodb+srv://readonly:readonly@demodata-rgl39.mongodb.net/test?retryWrites=true", database="demo", collection="zipcodes")
>>> atlas.find_one()
1    {'_id': '01069',
2     'city': 'PALMER',
3     'loc': [-72.328785, 42.176233],
4     'pop': 9778,
5     'state': 'MA'}

Outputting to a file

The MongoDB class can send output to a file by setting the output_file property on the MongoDB class.

>>> atlas.output_file="zipcodes.txt"
>>> atlas.find()
Output is also going to 'zipcodes.txt'
1    {'_id': '01069', 'city': 'PALMER', 'loc': [-72.328785, 42.176233], 'pop': 9778, 'state': 'MA'}
2    {'_id': '01002', 'city': 'CUSHMAN', 'loc': [-72.51565, 42.377017], 'pop': 36963, 'state': 'MA'}
3    {'_id': '01012', 'city': 'CHESTERFIELD', 'loc': [-72.833309, 42.38167], 'pop': 177, 'state': 'MA'}
4    {'_id': '01073', 'city': 'SOUTHAMPTON', 'loc': [-72.719381, 42.224697], 'pop': 4478, 'state': 'MA'}
5    {'_id': '01096', 'city': 'WILLIAMSBURG', 'loc': [-72.777989, 42.408522], 'pop': 2295, 'state': 'MA'}
6    {'_id': '01262', 'city': 'STOCKBRIDGE', 'loc': [-73.322263, 42.30104], 'pop': 2200, 'state': 'MA'}
7    {'_id': '01240', 'city': 'LENOX', 'loc': [-73.271322, 42.364241], 'pop': 5001, 'state': 'MA'}
8    {'_id': '01370', 'city': 'SHELBURNE FALLS', 'loc': [-72.739059, 42.602203], 'pop': 4525, 'state': 'MA'}
9    {'_id': '01340', 'city': 'COLRAIN', 'loc': [-72.726508, 42.67905], 'pop': 2050, 'state': 'MA'}
10   {'_id': '01462', 'city': 'LUNENBURG', 'loc': [-71.726642, 42.58843], 'pop': 9117, 'state': 'MA'}
11   {'_id': '01473', 'city': 'WESTMINSTER', 'loc': [-71.909599, 42.548319], 'pop': 6191, 'state': 'MA'}
12   {'_id': '01510', 'city': 'CLINTON', 'loc': [-71.682847, 42.418147], 'pop': 13269, 'state': 'MA'}
13   {'_id': '01569', 'city': 'UXBRIDGE', 'loc': [-71.632869, 42.074426], 'pop': 10364, 'state': 'MA'}
14   {'_id': '01775', 'city': 'STOW', 'loc': [-71.515019, 42.430785], 'pop': 5328, 'state': 'MA'}
>>> print(open('zipcodes.txt').read())
{'_id': '01069', 'city': 'PALMER', 'loc': [-72.328785, 42.176233], 'pop': 9778, 'state': 'MA'}
{'_id': '01002', 'city': 'CUSHMAN', 'loc': [-72.51565, 42.377017], 'pop': 36963, 'state': 'MA'}
{'_id': '01012', 'city': 'CHESTERFIELD', 'loc': [-72.833309, 42.38167], 'pop': 177, 'state': 'MA'}
{'_id': '01073', 'city': 'SOUTHAMPTON', 'loc': [-72.719381, 42.224697], 'pop': 4478, 'state': 'MA'}
{'_id': '01096', 'city': 'WILLIAMSBURG', 'loc': [-72.777989, 42.408522], 'pop': 2295, 'state': 'MA'}
{'_id': '01262', 'city': 'STOCKBRIDGE', 'loc': [-73.322263, 42.30104], 'pop': 2200, 'state': 'MA'}
{'_id': '01240', 'city': 'LENOX', 'loc': [-73.271322, 42.364241], 'pop': 5001, 'state': 'MA'}
{'_id': '01370', 'city': 'SHELBURNE FALLS', 'loc': [-72.739059, 42.602203], 'pop': 4525, 'state': 'MA'}
{'_id': '01340', 'city': 'COLRAIN', 'loc': [-72.726508, 42.67905], 'pop': 2050, 'state': 'MA'}
{'_id': '01462', 'city': 'LUNENBURG', 'loc': [-71.726642, 42.58843], 'pop': 9117, 'state': 'MA'}
{'_id': '01473', 'city': 'WESTMINSTER', 'loc': [-71.909599, 42.548319], 'pop': 6191, 'state': 'MA'}
{'_id': '01510', 'city': 'CLINTON', 'loc': [-71.682847, 42.418147], 'pop': 13269, 'state': 'MA'}
{'_id': '01569', 'city': 'UXBRIDGE', 'loc': [-71.632869, 42.074426], 'pop': 10364, 'state': 'MA'}
{'_id': '01775', 'city': 'STOW', 'loc': [-71.515019, 42.430785], 'pop': 5328, 'state': 'MA'}

Output will continue to be sent to the output_file until the output_file is assigned None or the empty string ("").

Result

If you need the actual value returned by a query it is stored in the result property. Note that if the result is a cursor and you have paged through some of the result then the cursor value may at an indeterminate location.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymongoshell-1.2.1b5.tar.gz (27.9 kB view details)

Uploaded Source

Built Distribution

pymongoshell-1.2.1b5-py2.py3-none-any.whl (29.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pymongoshell-1.2.1b5.tar.gz.

File metadata

  • Download URL: pymongoshell-1.2.1b5.tar.gz
  • Upload date:
  • Size: 27.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/46.4.0 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/3.7.3

File hashes

Hashes for pymongoshell-1.2.1b5.tar.gz
Algorithm Hash digest
SHA256 7a84ab219dba72eecab991a58daaef6dd3fec7812251c2eecb7a8b8aa5f28b09
MD5 23220cfbabcd0825946267b273878461
BLAKE2b-256 748e1b1036f53e4884eb0ab9bfb15df4b845c6fe7b042f2764cf8c84002be854

See more details on using hashes here.

File details

Details for the file pymongoshell-1.2.1b5-py2.py3-none-any.whl.

File metadata

  • Download URL: pymongoshell-1.2.1b5-py2.py3-none-any.whl
  • Upload date:
  • Size: 29.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/46.4.0 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/3.7.3

File hashes

Hashes for pymongoshell-1.2.1b5-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 3b1a8565b25a52295006e9683ba585297d70f92238eb8b93be91a5857c57e5bc
MD5 c22c9903fdd1aa5c3f77a391c0054107
BLAKE2b-256 2c3589ba3efa4d9352ceb84e77e6bad553cf92674d096dddbcd1f79594be461b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page