PymoNNtorch is a Pytorch version of PymoNNto
Project description
PymoNNtorch
PymoNNtorch is a Pytorch-adapted version of PymoNNto.
Free software: MIT license
Documentation: https://pymonntorch.readthedocs.io.
Features
Use torch tensors and Pytorch-like syntax to create a spiking neural network (SNN).
Simulate an SNN on CPU or GPU.
Define dynamics of SNN components as Behavior modules.
Control over the order of applying different behaviors in each simulation time step.
Usage
You can use the same syntax as PymoNNto to create you network:
from pymonntorch import *
net = Network()
ng = NeuronGroup(net=net, tag="my_neuron", size=100, behavior=None)
SynapseGroup(src=ng, dst=ng, net=net, tag="recurrent_synapse")
net.initialize()
net.simulate_iterations(1000)
Similarly, you can write your own Behavior Modules with the same logic as PymoNNto; except using torch tensors instead of numpy ndarrays.
from pymonntorch import *
class BasicBehavior(Behavior):
def initialize(self, neurons):
super().initialize(neurons)
neurons.voltage = neurons.vector(mode="zeros")
self.threshold = 1.0
def forward(self, neurons):
firing = neurons.voltage >= self.threshold
neurons.spike = firing.byte()
neurons.voltage[firing] = 0.0 # reset
neurons.voltage *= 0.9 # voltage decay
neurons.voltage += neurons.vector(mode="uniform", density=0.1)
class InputBehavior(Behavior):
def initialize(self, neurons):
super().initialize(neurons)
for synapse in neurons.afferent_synapses['GLUTAMATE']:
synapse.W = synapse.matrix('uniform', density=0.1)
synapse.enabled = synapse.W > 0
def forward(self, neurons):
for synapse in neurons.afferent_synapses['GLUTAMATE']:
neurons.voltage += synapse.W@synapse.src.spike.float() / synapse.src.size * 10
net = Network()
ng = NeuronGroup(net=net,
size=100,
behavior={
1: BasicBehavior(),
2: InputBehavior(),
9: Recorder(['voltage']),
10: EventRecorder(['spike'])
})
SynapseGroup(ng, ng, net, tag='GLUTAMATE')
net.initialize()
net.simulate_iterations(1000)
import matplotlib.pyplot as plt
plt.plot(net['voltage',0][:, :10])
plt.show()
plt.plot(net['spike.t',0], net['spike.i',0], '.k')
plt.show()
Credits
This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template. It changes the codebase of PymoNNto to use torch rather than numpy and tensorflow numpy.
History
0.1.1 (2023-05-26)
Every NetworkObject can have a recorder behavior.
Netowrk settings accept “index” entry.
Bug fixes and general improvement.
0.1.0 (2023-03-17)
Repository made public.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pymonntorch-0.1.2.tar.gz
.
File metadata
- Download URL: pymonntorch-0.1.2.tar.gz
- Upload date:
- Size: 509.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6a89e3af37c2a9ba8f3059d0bd73261b413f4c10598a60e0be98ab44d93e94bf |
|
MD5 | fed703d33b00d78d122c5ff7207fbaa8 |
|
BLAKE2b-256 | c67471c9138eb1ec876bed7257f819af016151a2b10af735398a19348ba379dc |
File details
Details for the file pymonntorch-0.1.2-py2.py3-none-any.whl
.
File metadata
- Download URL: pymonntorch-0.1.2-py2.py3-none-any.whl
- Upload date:
- Size: 37.7 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0746934a9a25c604b266adb33a0a7abadf59dd5067d33c042cbf757b8ce4ffd9 |
|
MD5 | 1a8fdabcb4a5b7ddd922870a3717de78 |
|
BLAKE2b-256 | 83993e0092ce670f2c62116cf20b858e8c758f96d3068e1ab6b60a4c8bc0d8d9 |