Skip to main content

Slepian Scale-Discretised Wavelets in Python

Project description

SLEPLET

PyPI Zenodo Documentation Licence

Python repostatus Test Coverage Status CodeFactor

JOSS PyOpenSci Citation

pre-commit Renovate

SLEPLET is a Python package for the construction of Slepian wavelets in the spherical and manifold (via meshes) settings. The API of SLEPLET has been designed in an object-orientated manner and is easily extendible. Upon installation, SLEPLET comes with two command line interfaces - sphere and mesh - which allows one to easily generate plots on the sphere and a set of meshes using plotly.

To read more about Slepian wavelets please see the following publications

Sifting Convolution on the Sphere Slepian Scale-Discretised Wavelets on the Sphere Slepian Scale-Discretised Wavelets on Manifolds Slepian Wavelets for the Analysis of Incomplete Data on Manifolds

Installation

The recommended way to install SLEPLET is via pip

pip install sleplet

To install the latest development version of SLEPLET clone this repository and run

pip install -e .

This will install two scripts sphere and mesh which can be used to generate the figures in the associated papers.

Supported Platforms

SLEPLET has been tested with Python. Windows is not currently supported as SLEPLET relies on pyssht and pys2let which do not work on Windows. These can hopefully be replaced with s2fft and s2wav in the future when they are available on PyPI.

Example Usage

SLEPLET may be interacted with via the API or the CLIs.

API Usage

The following demonstrates the first wavelet (ignoring the scaling function) of the South America region on the sphere.

import sleplet

B, J, J_MIN, L = 3, 0, 2, 128

region = sleplet.slepian.Region(mask_name="south_america")
f = sleplet.functions.SlepianWavelets(L, region=region, B=B, j_min=J_MIN, j=J)
f_sphere = sleplet.slepian_methods.slepian_inverse(f.coefficients, f.L, f.slepian)
sleplet.plotting.PlotSphere(
    f_sphere,
    f.L,
    f"slepian_wavelets_south_america_{B}B_{J_MIN}jmin_{J_MIN+J}j_L{L}",
    normalise=False,
    region=f.region,
).execute()

Slepian Wavelet j=2

CLI Usage

The demonstrates the first wavelet (ignoring the scaling function) of the head region of a Homer Simpson mesh for a per-vertex normals field.

mesh homer -e 3 2 0 -m slepian_wavelet_coefficients -u -z

Slepian Mesh Wavelet Coefficients j=2

Documentation

See here for the documentation. This includes demonstrations of the figures from the associated papers along with the API documentation. Further examples are included in the examples folder.

Community Guidelines

We'd love any contributions you may have, please see the contributing guidelines.

Citing

If you use SLEPLET in your research, please cite the paper.

@article{Roddy2023,
  title   = {{SLEPLET: Slepian Scale-Discretised Wavelets in Python}},
  author  = {Roddy, Patrick J.},
  year    = 2023,
  journal = {Journal of Open Source Software},
  volume  = 8,
  number  = 84,
  pages   = 5221,
  doi     = {10.21105/joss.05221},
}

Please also cite S2LET upon which SLEPLET is built, along with SSHT in the spherical setting or libigl in the mesh setting.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymtlibs-0.0.13.dev3.tar.gz (46.3 MB view details)

Uploaded Source

Built Distribution

pymtlibs-0.0.13.dev3-py3-none-any.whl (45.6 MB view details)

Uploaded Python 3

File details

Details for the file pymtlibs-0.0.13.dev3.tar.gz.

File metadata

  • Download URL: pymtlibs-0.0.13.dev3.tar.gz
  • Upload date:
  • Size: 46.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for pymtlibs-0.0.13.dev3.tar.gz
Algorithm Hash digest
SHA256 2f89c9b5893d9f63ac3774fc8d38a27adb545b717fae9728cb59beff67048130
MD5 704602a96079f190e20baec76129bc8b
BLAKE2b-256 4187acb901af24e3458f41b903103a48162e9525b07d6d1b09245f30f1d41f05

See more details on using hashes here.

File details

Details for the file pymtlibs-0.0.13.dev3-py3-none-any.whl.

File metadata

File hashes

Hashes for pymtlibs-0.0.13.dev3-py3-none-any.whl
Algorithm Hash digest
SHA256 4a350910f44fc3a3504b63f2f386538c55cf535f3684fc780d75afe7668e4a95
MD5 dca8a45cb2784828ea4772b0a7dd5178
BLAKE2b-256 730fb35e9b2c5349585f3206b618f9a963bf1fda28b38eb6f184d1eeb92d8204

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page