Skip to main content

PyMuPDF Utilities for LLM/RAG

Project description

Using PyMuPDF as Data Feeder in LLM / RAG Applications

This package converts the pages of a PDF to text in Markdown format using PyMuPDF.

Standard text and tables are detected, brought in the right reading sequence and then together converted to GitHub-compatible Markdown text.

Header lines are identified via the font size and appropriately prefixed with one or more '#' tags.

Bold, italic, mono-spaced text and code blocks are detected and formatted accordingly. Similar applies to ordered and unordered lists.

By default, all document pages are processed. If desired, a subset of pages can be specified by providing a list of 0-based page numbers.

Installation

$ pip install -U pymupdf4llm

This command will automatically install PyMuPDF if required.

Then in your script do:

import pymupdf4llm

md_text = pymupdf4llm.to_markdown("input.pdf")

# now work with the markdown text, e.g. store as a UTF8-encoded file
import pathlib
pathlib.Path("output.md").write_bytes(md_text.encode())

Instead of the filename string as above, one can also provide a PyMuPDF Document. By default, all pages in the PDF will be processed. If desired, the parameter pages=[...] can be used to provide a list of zero-based page numbers to consider.

Feature Overview:

  • Support for pages with multiple text columns.

  • Support for image and vector graphics extraction:

    1. Specify pymupdf4llm.to_markdown("input.pdf", write_images=True). Default is False.
    2. Each image or vector graphic on the page will be extracted and stored as an image named "input.pdf-pno-index.extension" in a folder of your choice. The image extension can be chosen to represent a PyMuPDF-supported image format (for instance "png" or "jpg"), pno is the 0-based page number and index is some sequence number.
    3. The image files will have width and height equal to the values on the page. The desired resolution can be chosen via parameter dpi (default: dpi=150).
    4. Any text contained in the images or graphics will be extracted and also become visible as part of the generated image. This behavior can be changed via force_text=False (text only apears as part of the image).
  • Support for page chunks: Instead of returning one large string for the whole document, a list of dictionaries can be generated: one for each page. Specify data = pymupdf4llm.to_markdown("input.pdf", page_chunks=True). Then, for instance the first item, data[0] will contain a dictionary for the first page with the text and some metadata.

  • As a first example for directly supporting LLM / RAG consumers, this version can output LlamaIndex documents:

    import pymupdf4llm
    
    md_read = LlamaMarkdownReader()
    data = md_read.load_data("input.pdf")
    
    # The result 'data' is of type List[LlamaIndexDocument]
    # Every list item contains metadata and the markdown text of 1 page.
    
    • A LlamaIndex document essentially corresponds to Python dictionary, where the markdown text of the page is one of the dictionary values. For instance the text of the first page is the the value of data[0].to_dict().["text"].
    • For details, please consult LlamaIndex documentation.
    • Upon creation of the LlamaMarkdownReader all necessary LlamaIndex-related imports are executed. Required related package installations must have been done independently and will not be checked during pymupdf4llm installation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymupdf4llm-0.0.17.tar.gz (25.2 kB view details)

Uploaded Source

Built Distribution

pymupdf4llm-0.0.17-py3-none-any.whl (26.2 kB view details)

Uploaded Python 3

File details

Details for the file pymupdf4llm-0.0.17.tar.gz.

File metadata

  • Download URL: pymupdf4llm-0.0.17.tar.gz
  • Upload date:
  • Size: 25.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pymupdf4llm-0.0.17.tar.gz
Algorithm Hash digest
SHA256 27287ef9fe0217cf37841a3ef2bcf70da2553c43d95ea39b664a6de6485678c3
MD5 fa3852b887cc9e22b90656ec2b4db426
BLAKE2b-256 2e3c1a530a410bdf76d83289bf30b3b86236d338b3f5f21842790c2cf7e9c1f6

See more details on using hashes here.

File details

Details for the file pymupdf4llm-0.0.17-py3-none-any.whl.

File metadata

  • Download URL: pymupdf4llm-0.0.17-py3-none-any.whl
  • Upload date:
  • Size: 26.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pymupdf4llm-0.0.17-py3-none-any.whl
Algorithm Hash digest
SHA256 26de9996945f15e3ca507908f80dc18a959f5b5214bb2e302c7f7034089665a0
MD5 211352ae67375461ab19e7cb0765236b
BLAKE2b-256 aeaf1576ecfc8a62d31c0c8b34b856e52f6b05f1d76546dbac0e1d037f044a9e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page