Skip to main content

Naive discriminative learning implements learning and classification models based on the Rescorla-Wagner equations.

Project description

pyndl is an implementation of Naive Discriminative Learning in Python. It was created to analyse huge amounts of text file corpora. Especially, it allows to efficiently apply the Rescorla-Wagner learning rule to these corpora.


The easiest way to install pyndl is using pip:

pip install --user pyndl

For more information have a look at the Installation Guide.


pyndl uses sphinx to create a documentation manual. The documentation is hosted on Read the Docs.

Getting involved

The pyndl project welcomes help in the following ways:

For more information on how to contribute to pyndl have a look at the development section.

Authors and Contributers

pyndl was mainly developed by Konstantin Sering, Marc Weitz, David-Elias Künstle, Elnaz Shafaei Bajestan and Lennart Schneider. For the full list of contributers have a look at Github’s Contributor summary.

Currently, it is maintained by Konstantin Sering and Marc Weitz.


This research was supported by an ERC advanced Grant (no. 742545) and by the Alexander von Humboldt Professorship awarded to R. H. Baayen and by the University of Tübingen.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyndl-0.8.2.tar.gz (506.1 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page