Skip to main content

Python module to build digital signal processing program.

Project description

pyo is a Python module containing classes for a wide variety of audio signal processing types. With pyo, user will be able to include signal processing chains directly in Python scripts or projects, and to manipulate them in real time through the interpreter. Tools in pyo module offer primitives, like mathematical operations on audio signal, basic signal processing (filters, delays, synthesis generators, etc.), but also complex algorithms to create sound granulation and others creative audio manipulations. pyo supports OSC protocol (Open Sound Control), to ease communications between softwares, and MIDI protocol, for generating sound events and controlling process parameters. pyo allows creation of sophisticated signal processing chains with all the benefits of a mature, and widely used, general programming language.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyo-1.0.5.tar.gz (5.2 MB view details)

Uploaded Source

Built Distributions

pyo-1.0.5-cp311-cp311-win_amd64.whl (8.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyo-1.0.5-cp311-cp311-macosx_13_0_arm64.whl (9.7 MB view details)

Uploaded CPython 3.11 macOS 13.0+ ARM64

pyo-1.0.5-cp311-cp311-macosx_12_0_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

pyo-1.0.5-cp310-cp310-win_amd64.whl (8.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyo-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyo-1.0.5-cp310-cp310-macosx_13_0_arm64.whl (9.7 MB view details)

Uploaded CPython 3.10 macOS 13.0+ ARM64

pyo-1.0.5-cp310-cp310-macosx_12_0_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

pyo-1.0.5-cp39-cp39-win_amd64.whl (8.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyo-1.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyo-1.0.5-cp39-cp39-macosx_13_0_arm64.whl (9.7 MB view details)

Uploaded CPython 3.9 macOS 13.0+ ARM64

pyo-1.0.5-cp39-cp39-macosx_12_0_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

pyo-1.0.5-cp38-cp38-win_amd64.whl (8.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyo-1.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyo-1.0.5-cp38-cp38-macosx_13_0_arm64.whl (9.7 MB view details)

Uploaded CPython 3.8 macOS 13.0+ ARM64

pyo-1.0.5-cp38-cp38-macosx_12_0_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.8 macOS 12.0+ x86-64

pyo-1.0.5-cp37-cp37m-win_amd64.whl (8.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyo-1.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyo-1.0.5-cp37-cp37m-macosx_12_0_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.7m macOS 12.0+ x86-64

File details

Details for the file pyo-1.0.5.tar.gz.

File metadata

  • Download URL: pyo-1.0.5.tar.gz
  • Upload date:
  • Size: 5.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.2

File hashes

Hashes for pyo-1.0.5.tar.gz
Algorithm Hash digest
SHA256 e042d947a0b641b400e228f9e21eeca21df8bf4895c6dbd013f87638d7728e31
MD5 64e685874d5d3ce4cb551056cecc4aa7
BLAKE2b-256 77c8e949d16170a9f448994be74963fad54557c13d1c4e4302590fa35280ae55

See more details on using hashes here.

File details

Details for the file pyo-1.0.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyo-1.0.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.2

File hashes

Hashes for pyo-1.0.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2034c1c5e22c7de4a400d1967c50d217bdd3bed68f1d2eb50b7a01d3d3454ab4
MD5 1fd0fa4cd7e3c9133b6ccbec3f3f65e4
BLAKE2b-256 187159cd7ad1e51ec8b6388ccefdbb7e35a0f135723123e7558ee531de0670a4

See more details on using hashes here.

File details

Details for the file pyo-1.0.5-cp311-cp311-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pyo-1.0.5-cp311-cp311-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 dc486007c1e16dea08509561052702fee43000be13c093a813cd94cb8f7483f8
MD5 a833f9962e55c60bc4cd57a80df24340
BLAKE2b-256 98d5980fb66cd0ae6f7f5f9a8c6fe3c447b13a610f20f9586c22d1f1d11407dc

See more details on using hashes here.

File details

Details for the file pyo-1.0.5-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pyo-1.0.5-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 0e93466fa5c417ccf17c80c4e476047d4d12582e84ccbfd19c289a018212a8dc
MD5 45868614e55d7eb8fbda5fb566c7bf08
BLAKE2b-256 06bbbd246a7901dc1991b97049376e6238cbb85b708515db6203617b46e16a00

See more details on using hashes here.

File details

Details for the file pyo-1.0.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyo-1.0.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.2

File hashes

Hashes for pyo-1.0.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 430f1df284090dea0dea582507d5437de71305e1706f2402743628163882e672
MD5 e207241b60f99c38466621c6cf6d22a7
BLAKE2b-256 43002cb0f13b6e9e02234eef5a3defabb2bedef04b4babef90808db9441e2429

See more details on using hashes here.

File details

Details for the file pyo-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyo-1.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae2e2df726e9cec1f554370d02b784bb8d7d47552fcfcd0dda194928d2ad16e9
MD5 5d7bc6d2a0f628ef1f8244d648e24eb6
BLAKE2b-256 e0b88d0e38166af5291bf9198e7733adecaf767fe4f9a13c8ab639d0528d4d9e

See more details on using hashes here.

File details

Details for the file pyo-1.0.5-cp310-cp310-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pyo-1.0.5-cp310-cp310-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 f047d3bafdd2438099774254377d64923ffc090db5bd4bb49cb33416e9d6ee2f
MD5 d827be720fbe906e66d5215d268b4e0e
BLAKE2b-256 a10ac1f7bf6d4b2698ce57a3f7d01abf5c7b0ced9aed5b264068b6387ee91053

See more details on using hashes here.

File details

Details for the file pyo-1.0.5-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pyo-1.0.5-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 7bdf11a32640ac3b8d32187ef9f76dd8fa3a811222563083c911ccc6b3b6faf1
MD5 a3880c739cf1abc16d1c18ef67296431
BLAKE2b-256 262ead102b370b3691e2f58f215a4e01801bd257359e92ec3d396108079a7974

See more details on using hashes here.

File details

Details for the file pyo-1.0.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyo-1.0.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.2

File hashes

Hashes for pyo-1.0.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9f7437b48e8d5ada913050b0f99ae14cf8f2ac82f80e0fa228034a94acd64102
MD5 0ae511e47a2e1731f786c947e6e2f769
BLAKE2b-256 a9c0e7b5db9fa0fb62e6a986ff197eb29527573a837548081cb8cfd2918df3b2

See more details on using hashes here.

File details

Details for the file pyo-1.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyo-1.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7555ef42a1e413f1a1c86b546cfb40b51b4019944712666b364871034ceab107
MD5 2a678f2cdcc1fcbafee1478708d299a0
BLAKE2b-256 b09ca629fb1a77829258dff1b8d047da4d82267ebd2cd7dcf480cd1ee0cca64a

See more details on using hashes here.

File details

Details for the file pyo-1.0.5-cp39-cp39-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pyo-1.0.5-cp39-cp39-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 9c0806d3b22045b9baf2de97a389db4f56d73edeafeea00a11fdb7fb6c0d7ecc
MD5 eb2a79a28089a76a1938dd169e6dcd45
BLAKE2b-256 bd9f17b90abb599a79958602a911adc7de3d0458b672be1774c7dfae952f6ff5

See more details on using hashes here.

File details

Details for the file pyo-1.0.5-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pyo-1.0.5-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 664af552a800011f4f91162c33990171e388200c18ac43a530be24e0e2122ce5
MD5 2ce20ed2331d51ab8560263bd1a411aa
BLAKE2b-256 5bb1915256809eede37ef9c73f4602ec72963880ff81bad93918afae06e45f31

See more details on using hashes here.

File details

Details for the file pyo-1.0.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyo-1.0.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 8.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.2

File hashes

Hashes for pyo-1.0.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 34a6ca33ee3e50a69078a2e5c8897921bc892446806cb1efd61ee9a3d3691c0b
MD5 7e8d23027b89a543b66e67309787978b
BLAKE2b-256 4981dd61d972560b0c5d5c8cbb300df19078235eef2ffaa46686acea728c0b26

See more details on using hashes here.

File details

Details for the file pyo-1.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyo-1.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 19f6c55c9810527a99a98d31fb81a1e5ba451f5767c7cf858826402d4844f9c4
MD5 896a0356cbd4a2158a3801ceb9f643a8
BLAKE2b-256 2dba34e140d5fea5bb612b2d0a79eee55ce1a2282da1858568449f7bcf91bd76

See more details on using hashes here.

File details

Details for the file pyo-1.0.5-cp38-cp38-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pyo-1.0.5-cp38-cp38-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 3c63223452fb2ea4b97400d749ef44c3c281cfb00fea9dcb480317435c3b9ea1
MD5 bd60febfda2a16772d490302bcb4db48
BLAKE2b-256 63017ee2ea4b092263faaa60293b8bb4f5e9206f923e3313c888cb3653c55e8b

See more details on using hashes here.

File details

Details for the file pyo-1.0.5-cp38-cp38-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pyo-1.0.5-cp38-cp38-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 8cb21f92ac51e2c76b0701004687dc67df3708f39c9c9d5eccbd77c2434dc8e6
MD5 f6f01235f8cab5375251798837767ec1
BLAKE2b-256 cd35bfef74c811e7f27029405bb069c90334964f76412589e24830b4c860d63a

See more details on using hashes here.

File details

Details for the file pyo-1.0.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyo-1.0.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 8.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.2

File hashes

Hashes for pyo-1.0.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e8219cf3169c50851646bdb1c753e420b8916b3e1992667f876be760dd40c007
MD5 152ad1a9ecd02057ad7e20a84796464d
BLAKE2b-256 d0abb0349ffd5d642e2ef23970c9da35648a95a9cd338977bdcf93c94b7752af

See more details on using hashes here.

File details

Details for the file pyo-1.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyo-1.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3b2e00a30123235c5b84ed9e5c4644ad6dd7d3053464d8b8e659c9ca96a01810
MD5 db305c04660113b049afe90c621ddbcf
BLAKE2b-256 d640b4ec9ac75e4d31290ab31314fd83a69801b59725d1b6bcbd820e00ad67f6

See more details on using hashes here.

File details

Details for the file pyo-1.0.5-cp37-cp37m-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pyo-1.0.5-cp37-cp37m-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 e35fec62e7e0a73b950546135823e02adc44312629576f0bb4df319f86b4e495
MD5 c9d554f35bfadfc8d9803274d719b246
BLAKE2b-256 ec5a63266caca7baa40aeb771d174b19fe89dc4969f0bb611f9da7855fa7f2c6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page